A comparison of refinement indicators for p-adaptive simulations of steady and unsteady flows using discontinuous Galerkin methods

Abstract This paper presents an analysis of refinement indicators for the simulation of steady and unsteady flows by means of p -adaptive algorithms for discontinuous Galerkin (DG) methods. Residual-error, discretization-error and feature-based indicators are compared by studying their effect on convergence history, computational gain and refinement regions selected by the adaptive algorithm. The analysis is initially carried out on steady flow configurations. Static p -adaptive simulations of the periodic flow past a cylinder at R e = 100 are then performed. Compared to uniform p -refinement, a reduction between 50% and 75% in the number of degrees of freedom is obtained for all test cases considered. The accuracy and efficiency observed for the small-scale energy density [1] and spectral decay [2] indicators demonstrate their great potential for the adaptive simulation of unsteady flows.

[1]  Vít Dolejší,et al.  Residual based error estimates for the space–time discontinuous Galerkin method applied to the compressible flows , 2015 .

[2]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[3]  J. T. Oden,et al.  An hp adaptive strategy for finite element approximations of the Navier‐Stokes equations , 1995 .

[4]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[5]  Esteban Ferrer,et al.  Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation , 2016, J. Comput. Phys..

[6]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[7]  O. Posdziech,et al.  A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder , 2007 .

[8]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[9]  Serge Nicaise,et al.  A posteriori error estimator based on gradient recovery by averaging for convection–diffusion–reaction problems approximated by discontinuous Galerkin methods , 2010, 1011.0973.

[10]  Luca Bonaventura,et al.  Dynamic models for Large Eddy Simulation of compressible flows with a high order DG method , 2014, Computers & Fluids.

[11]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[12]  Vít Dolejsí,et al.  hp-discontinuous Galerkin method based on local higher order reconstruction , 2016, Appl. Math. Comput..

[13]  Ralf Hartmann,et al.  Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..

[14]  M. de la Llave Plata,et al.  Aghora: A High-Order DG Solver for Turbulent Flow Simulations , 2015 .

[15]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[16]  Vít Dolejsí,et al.  hp-DGFEM for nonlinear convection-diffusion problems , 2013, Math. Comput. Simul..

[17]  Michel Visonneau,et al.  Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation , 2014 .

[18]  Catherine Mavriplis,et al.  Adaptive mesh strategies for the spectral element method , 1992 .

[19]  John G. Bartzis,et al.  Numerical experiments on the efficiency of local grid refinement based on truncation error estimates , 2012, J. Comput. Phys..

[20]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[21]  Lorenzo Botti,et al.  Influence of Reference-to-Physical Frame Mappings on Approximation Properties of Discontinuous Piecewise Polynomial Spaces , 2012, J. Sci. Comput..

[22]  Joseph E. Flaherty,et al.  Error Estimation for Discontinuous Galerkin Solutions of Two-Dimensional Hyperbolic Problems , 2003, Adv. Comput. Math..

[23]  Dirk Ekelschot Mesh adaptation strategies for compressible flows using a high-order spectral/hp element discretisation , 2016 .

[24]  A. Oliva,et al.  Parallel adaptive mesh refinement for large-eddy simulations of turbulent flows , 2015 .

[25]  C. Norberg An experimental investigation of the flow around a circular cylinder: influence of aspect ratio , 1994, Journal of Fluid Mechanics.

[26]  Fu-jun Wang,et al.  Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200 , 2013 .

[27]  S. Majumdar,et al.  Numerical simulation of laminar flow past a circular cylinder , 2009 .

[28]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[29]  J. Remacle,et al.  Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws , 2004 .

[30]  C. Williamson Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers , 1989, Journal of Fluid Mechanics.

[31]  Mark Ainsworth,et al.  A Posteriori Error Estimation for Discontinuous Galerkin Finite Element Approximation , 2007, SIAM J. Numer. Anal..

[32]  Eric Lamballais,et al.  A reference solution of the flow over a circular cylinder at Re = 40 , 2013, 1310.6641.

[33]  E. Süli,et al.  A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .

[34]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[35]  Sorin Mitran A Comparison of Adaptive Mesh Refinement Approaches for Large Eddy Simulation , 2001 .

[36]  E. Lamballais,et al.  Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows , 2014 .

[37]  Ralf Hartmann,et al.  Error Estimation and Adaptive Mesh Refinement for Aerodynamic Flows , 2010 .

[38]  Marjorie A. McClain,et al.  A Comparison of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2014, ACM Trans. Math. Softw..

[39]  Giovanni Tumolo,et al.  A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations , 2013, J. Comput. Phys..

[40]  Christopher J. Roy,et al.  Review of Discretization Error Estimators in Scientific Computing , 2010 .

[41]  Vít Dolejší,et al.  A design of residual error estimates for a high order BDF‐DGFE method applied to compressible flows , 2013 .

[42]  Gabriella Puppo,et al.  A robust and adaptive recovery‐based discontinuous Galerkin method for the numerical solution of convection–diffusion equations , 2015 .

[43]  Antonella Abbà,et al.  A locally p-adaptive approach for Large Eddy Simulation of compressible flows in a DG framework , 2016, J. Comput. Phys..

[44]  Frédéric Coquel,et al.  An Adaptive Variational Multiscale Discontinuous Galerkin Method For Large Eddy Simulation , 2016 .

[45]  D. Tritton Experiments on the flow past a circular cylinder at low Reynolds numbers , 1959, Journal of Fluid Mechanics.

[46]  Catherine Mavriplis,et al.  Nonconforming discretizations and a posteriori error estimators for adaptive spectral element techniques , 1989 .

[47]  Giovanni Tumolo,et al.  A semi‐implicit, semi‐Lagrangian discontinuous Galerkin framework for adaptive numerical weather prediction , 2015 .

[48]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[49]  Vincent Couaillier,et al.  On the use of a high-order discontinuous Galerkin method for DNS and LES of wall-bounded turbulence , 2017, Computers & Fluids.

[50]  Carol S. Woodward,et al.  Numerical error estimation for nonlinear hyperbolic PDEs via nonlinear error transport , 2011 .