Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration

[1]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[2]  J. Martens,et al.  Genomic profiling of CHEK2*1100delC-mutated breast carcinomas , 2015, BMC Cancer.

[3]  Benjamin J. Raphael,et al.  CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer , 2015, Genome Biology.

[4]  Martin L. Miller,et al.  Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer , 2015, Science.

[5]  T. Schumacher,et al.  Neoantigens in cancer immunotherapy , 2015, Science.

[6]  Sri Krishna,et al.  TCR contact residue hydrophobicity is a hallmark of immunogenic CD8+ T cell epitopes , 2015, Proceedings of the National Academy of Sciences.

[7]  A. Hollestelle,et al.  Tumor-associated inflammation as a potential prognostic tool in BRCA1/2-associated breast cancer. , 2015, Human pathology.

[8]  M. Hallett,et al.  Absolute assignment of breast cancer intrinsic molecular subtype. , 2015, Journal of the National Cancer Institute.

[9]  J. Wolchok,et al.  Genetic basis for clinical response to CTLA-4 blockade in melanoma. , 2014, The New England journal of medicine.

[10]  P. Brown,et al.  Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data , 2014, Breast Cancer Research and Treatment.

[11]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[12]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[13]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[14]  D. Walerych,et al.  The rebel angel: mutant p53 as the driving oncogene in breast cancer , 2012, Carcinogenesis.

[15]  A. Sivachenko,et al.  Sequence analysis of mutations and translocations across breast cancer subtypes , 2012, Nature.

[16]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[17]  A. Børresen-Dale,et al.  The landscape of cancer genes and mutational processes in breast cancer , 2012, Nature.

[18]  F. Markowetz,et al.  The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.

[19]  M. Ringnér,et al.  Characterisation of amplification patterns and target genes at chromosome 11q13 in CCND1-amplified sporadic and familial breast tumours , 2012, Breast Cancer Research and Treatment.

[20]  L. Pusztai,et al.  Gene expression profiling in breast cancer: classification, prognostication, and prediction , 2011, The Lancet.

[21]  C. Purdie,et al.  High CCND1 amplification identifies a group of poor prognosis women with estrogen receptor positive breast cancer , 2010, International journal of cancer.

[22]  Rafael A Irizarry,et al.  Frozen robust multiarray analysis (fRMA). , 2010, Biostatistics.

[23]  Tom Royce,et al.  A comprehensive catalogue of somatic mutations from a human cancer genome , 2010, Nature.

[24]  Clemencia Pinilla,et al.  Derivation of an amino acid similarity matrix for peptide:MHC binding and its application as a Bayesian prior , 2009, BMC Bioinformatics.

[25]  A. Vincent-Salomon,et al.  High frequency of TP53 mutation in BRCA1 and sporadic basal-like carcinomas but not in BRCA1 luminal breast tumors. , 2009, Cancer research.

[26]  Morten Nielsen,et al.  NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11 , 2008, Nucleic Acids Res..

[27]  John W M Martens,et al.  Subtypes of breast cancer show preferential site of relapse. , 2008, Cancer research.

[28]  Yi Zhang,et al.  Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer , 2007, BMC Cancer.

[29]  A. Whittemore,et al.  BRCA2 Mutation-associated Breast Cancers Exhibit a Distinguishing Phenotype Based on Morphology and Molecular Profiles From Tissue Microarrays , 2007, The American journal of surgical pathology.

[30]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[31]  Hongjuan Zhao,et al.  TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer , 2007, Breast Cancer Research.

[32]  J. Bergh,et al.  The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. , 2006, Clinical cancer research : an official journal of the American Association for Cancer Research.

[33]  R. Strausberg,et al.  Mutation of GATA3 in human breast tumors , 2004, Oncogene.

[34]  Jelle J. Goeman,et al.  A global test for groups of genes: testing association with a clinical outcome , 2004, Bioinform..

[35]  O. Lund,et al.  novel sequence representations Reliable prediction of T-cell epitopes using neural networks with , 2003 .

[36]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. Liao,et al.  c-Myc in breast cancer. , 2000, Endocrine-related cancer.

[38]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[39]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[40]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  G. Berx,et al.  E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. , 1996, Oncogene.

[42]  M. Vijver,et al.  E‐cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. , 1995, The EMBO journal.

[43]  J. Foekens,et al.  c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. , 1992, Cancer research.

[44]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.