An MR-Conditional High-Torque Pneumatic Stepper Motor for MRI-Guided and Robot-Assisted Intervention

[1]  Long Wang,et al.  Adaptive Slope Walking With a Robotic Transtibial Prosthesis Based on Volitional EMG Control , 2015, IEEE/ASME Transactions on Mechatronics.

[2]  Zion Tsz Ho Tse,et al.  A 10-mm MR-Conditional Unidirectional Pneumatic Stepper Motor , 2015, IEEE/ASME Transactions on Mechatronics.

[3]  Zion Tsz Ho Tse,et al.  An MR-Conditional High-Torque Pneumatic Stepper Motor for MRI-Guided and Robot-Assisted Intervention , 2014, Annals of Biomedical Engineering.

[4]  Wayne Luk,et al.  MRI-based visual and haptic catheter feedback: simulating a novel system's contribution to efficient and safe MRI-guided cardiac electrophysiology procedures , 2014, Journal of Cardiovascular Magnetic Resonance.

[5]  Ka-Wai Kwok,et al.  MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures , 2014, Journal of Cardiovascular Magnetic Resonance.

[6]  V. Johnson Revised standards for statistical evidence , 2013, Proceedings of the National Academy of Sciences.

[7]  Pierre E. Dupont,et al.  An MRI-powered and controlled actuator technology for tetherless robotic interventions , 2013, Int. J. Robotics Res..

[8]  A. Martin,et al.  Endovascular Catheter for Magnetic Navigation under MR Imaging Guidance: Evaluation of Safety In Vivo at 1.5T , 2013, American Journal of Neuroradiology.

[9]  Pierre E. Dupont,et al.  Closed-loop commutation control of an MRI-powered robot actuator , 2013, 2013 IEEE International Conference on Robotics and Automation.

[10]  Zhigang Deng,et al.  A Framework for Integrating Real-Time MRI With Robot Control: Application to Simulated Transapical Cardiac Interventions , 2013, IEEE Transactions on Biomedical Engineering.

[11]  Zion Tsz Ho Tse,et al.  Prospective motion correction using tracking coils , 2013, Magnetic resonance in medicine.

[12]  Gabor Fichtinger,et al.  A workspace‐orientated needle‐guiding robot for 3T MRI‐guided transperineal prostate intervention: evaluation of in‐bore workspace and MRI compatibility , 2013, The international journal of medical robotics + computer assisted surgery : MRCAS.

[13]  Guang-Zhong Yang,et al.  Dimensionality Reduction in Controlling Articulated Snake Robot for Endoscopy Under Dynamic Active Constraints , 2013, IEEE Transactions on Robotics.

[14]  Ken Masamune,et al.  MR-Safe Pneumatic Rotation Stepping Actuator , 2012, J. Robotics Mechatronics.

[15]  Zion Tsz Ho Tse,et al.  Haptic Needle Unit for MR-Guided Biopsy and Its Control , 2012, IEEE/ASME Transactions on Mechatronics.

[16]  Robert Riener,et al.  Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging , 2011, International Journal of Computer Assisted Radiology and Surgery.

[17]  Gabor Fichtinger,et al.  Development of a pneumatic robot for MRI-guided transperineal prostate biopsy and brachytherapy: New approaches , 2010, 2010 IEEE International Conference on Robotics and Automation.

[18]  Mitchell D Schnall,et al.  Outcome of MRI-guided breast biopsy. , 2008, AJR. American journal of roentgenology.

[19]  G.S. Fischer,et al.  MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement , 2008, IEEE/ASME Transactions on Mechatronics.

[20]  M.U. Lamperth,et al.  A 3-DOF MR-Compatible Device for Magic Angle Related In Vivo Experiments , 2008, IEEE/ASME Transactions on Mechatronics.

[21]  Walter A Hall,et al.  Intraoperative MR‐guided neurosurgery , 2008, Journal of magnetic resonance imaging : JMRI.

[22]  A. Patriciu,et al.  A New Type of Motor: Pneumatic Step Motor , 2007, IEEE/ASME Transactions on Mechatronics.

[23]  Akio Yamamoto,et al.  Actuation Methods for Applications in MR Environments , 2006 .

[24]  Osman Azmi Ozsoysal,et al.  Heat loss as a percentage of fuel’s energy in air standard Otto and Diesel cycles , 2006 .

[25]  Kenji Kawashima,et al.  Power Assessment of Flowing Compressed Air , 2006 .

[26]  L. Liberman,et al.  MRI-guided 9-gauge vacuum-assisted breast biopsy: initial clinical experience. , 2005, AJR. American journal of roentgenology.

[27]  Lingen Chen,et al.  Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid , 2005 .

[28]  D Stoianovici,et al.  Multi‐imager compatible actuation principles in surgical robotics , 2005, The international journal of medical robotics + computer assisted surgery : MRCAS.

[29]  Karlheinz Meier,et al.  Evaluation of a pneumatically driven tactile stimulator device for vision substitution during fMRI studies , 2004, Magnetic resonance in medicine.

[30]  R. Briggs,et al.  A pneumatic vibrotactile stimulation device for fMRI , 2004, Magnetic resonance in medicine.

[31]  Yildirim Hurmuzlu,et al.  A High Performance Pneumatic Force Actuator System: Part I—Nonlinear Mathematical Model , 2000 .

[32]  Ron Kikinis,et al.  MR Compatibility of Mechatronic Devices: Design Criteria , 1999, MICCAI.

[33]  Robinson Js,et al.  An appraisal of piped medical gas systems. , 1982 .

[34]  Yi Wang,et al.  SLIDING MODE CONTROL OF PIEZOELECTRIC VALVE REGULATED PNEUMATIC ACTUATOR FOR MRI-COMPATIBLE ROBOTIC INTERVENTION , 2010 .

[35]  K. Hynynen,et al.  Transcranial MRI-guided focused ultrasound surgery of brain tumors: Initial findings in patients , 2008 .

[36]  Martin J. Graves,et al.  Comprar MRI from Picture to Proton | Martin R. Prince | 9780521683845 | Cambridge University Press , 2007 .

[37]  Computer-Assisted Intervention,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI’99 , 1999, Lecture Notes in Computer Science.

[38]  H Iseki,et al.  Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. , 1995, Journal of image guided surgery.

[39]  J. Robinson,et al.  An appraisal of piped medical gas systems. , 1982, British journal of hospital medicine.