Stable multi-GeV electron accelerator driven by waveform-controlled PW laser pulses

[1]  Andrea Benaglia,et al.  Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV , 2010 .

[2]  T. Ditmire,et al.  Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV , 2013, Nature Communications.

[3]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[4]  A Pak,et al.  Demonstration of a narrow energy spread, ∼0.5  GeV electron beam from a two-stage laser wakefield accelerator. , 2011, Physical review letters.

[5]  Zhi‐zhan Xu,et al.  All-optical cascaded laser wakefield accelerator using ionization-induced injection. , 2011, Physical review letters.

[6]  K. Hong,et al.  Coherent control of high-order harmonics with chirped femtosecond laser pulses. , 2001, Physical review letters.

[7]  C. Liu,et al.  Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source , 2013, Nature Photonics.

[8]  B. S. Rao,et al.  Effect of chirp on self-modulation and laser wakefield electron acceleration in the regime of quasimonoenergetic electron beam generation , 2013 .

[9]  C. Geddes,et al.  Frequency chirp and pulse shape effects in self-modulated laser wakefield accelerators , 2003 .

[10]  Tae Jun Yu,et al.  0.1 Hz 1.0 PW Ti:sapphire laser. , 2010, Optics letters.

[11]  J. Cary,et al.  Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. , 2008, Physical review letters.

[12]  M. Mostafavi,et al.  Absolute calibration for a broad range single shot electron spectrometer , 2006 .

[13]  V Malka,et al.  Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. , 2009, Physical review letters.

[14]  Erik Lefebvre,et al.  Particle-in-Cell modelling of laser-plasma interaction using Fourier decomposition , 2009, J. Comput. Phys..

[15]  Ferenc Krausz,et al.  Laser-driven soft-X-ray undulator source , 2009 .

[16]  R. Trines,et al.  Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. , 2002, Physical review letters.

[17]  Eric Esarey,et al.  Tunable laser plasma accelerator based on longitudinal density tailoring , 2011 .

[18]  Y. Glinec,et al.  Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses , 2006, Nature.

[19]  Jun Zhang,et al.  Adaptive-feedback spectral-phase control for interactions with transform-limited ultrashort high-power laser pulses. , 2014, Optics letters.

[20]  D. Du,et al.  Numerical modelling of a 10-cm-long multi-GeV laser wakefield accelerator driven by a self-guided petawatt pulse , 2010 .

[21]  Utilizing asymmetric laser pulses for the generation of high-quality wakefield-accelerated electron beams , 2011 .

[22]  B. Shadwick,et al.  Laser plasma acceleration with a negatively chirped pulse: all-optical control over dark current in the blowout regime , 2012 .

[23]  M. Milivojević The Dream is Alive , 1986 .

[24]  I. V. Glazyrin,et al.  Ionization induced trapping in a laser wakefield accelerator. , 2009, Physical review letters.

[25]  Tae Jun Yu,et al.  Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses. , 2013, Physical review letters.

[26]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[27]  Moore,et al.  Temporal Evolution of Self-Modulated Laser Wakefields Measured by Coherent Thomson Scattering. , 1996, Physical review letters.

[28]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[29]  H Rabitz,et al.  Coherent control of quantum dynamics: the dream is alive. , 2008, Science.

[30]  A Pak,et al.  Injection and trapping of tunnel-ionized electrons into laser-produced wakes. , 2009, Physical review letters.

[31]  Wei Lu,et al.  OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators , 2002, International Conference on Computational Science.

[32]  Portugal,et al.  Effect of the frequency chirp on laser wakefield acceleration , 2011, 1112.4380.

[33]  Pierre Tournois,et al.  Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems , 1997 .

[34]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[35]  B. Shadwick,et al.  Customizable electron beams from optically controlled laser plasma acceleration for γ-ray sources based on inverse Thomson scattering , 2016 .

[36]  D. Kaplan,et al.  Self-referenced spectral interferometry , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[37]  G. Assanto Wiley Series in Pure and Applied Optics , 2012 .

[38]  K. Ta Phuoc,et al.  Shock assisted ionization injection in laser-plasma accelerators , 2015, Scientific Reports.

[39]  M. Fenstermacher,et al.  First tests of molybdenum mirrors for ITER diagnostics in DIII-D divertor , 2006 .

[40]  J. Mikhailova,et al.  Shock-front injector for high-quality laser-plasma acceleration. , 2013, Physical review letters.

[41]  S R Nagel,et al.  Complete temporal characterisation of asymmetric pulse compression in a laser wakefield , 2010, 1010.3694.

[42]  K. Nakamura,et al.  Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. , 2014, Physical review letters.

[43]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.