Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows

This paper deals with the combination of two solution methods: multigrid and GMRES [SIAM J. Sci. Comput., 14 (1993), pp. 856--869]. The generality and parallelizabili nonlinear PDEs. As the "preconditioner" for a nonlinear Krylov subspace method, we use the full approximation storage (FAS) scheme [ Math. Comp., 31 (1977), pp. 333--390], a nonlinear multigrid method. The nonlinear Krylov acceleration is applied also on coarse grids, so that recirculating incompressible flow problems discretized with a higher order upwind scheme can be solved efficiently.

[1]  Achi Brandt,et al.  Inadequacy of first-order upwind difference schemes for some recirculating flows , 1991 .

[2]  A. Sidi,et al.  Extrapolation methods for vector sequences , 1987 .

[3]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[4]  Cornelis W. Oosterlee,et al.  KRYLOV SUBSPACE ACCELERATION FOR NONLINEAR MULTIGRID SCHEMES , 1997 .

[5]  Achi Brandt,et al.  Local mesh refinement multilevel techniques , 1987 .

[6]  Cornelis W. Oosterlee,et al.  An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for Singularly Perturbed Problems , 1998, SIAM J. Sci. Comput..

[7]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[8]  Barbara Steckel,et al.  Parallel Multigrid in the Simulation of Metal Flow , 1997, PARCO.

[9]  Achi Brandt,et al.  On Recombining Iterants in Multigrid Algorithms and Problems with Small Islands , 1995, SIAM J. Sci. Comput..

[10]  Achi Brandt,et al.  Accelerated Multigrid Convergence and High-Reynolds Recirculating Flows , 1993, SIAM J. Sci. Comput..

[11]  Anton Schüller,et al.  Multigrid methods on parallel computers - A survey of recent developments , 1991, IMPACT Comput. Sci. Eng..

[12]  Erik Dick,et al.  A multigrid method for steady incompressible navier‐stokes equations based on flux difference splitting , 1992 .

[13]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[14]  Reiner Kopp,et al.  Stahlbandherstellung nach dem Zweirollenverfahren - Modellierung des Strömungs- und Temperaturfeldes , 1995 .

[15]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[16]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[17]  Achi Brandt,et al.  Fast Multigrid Solution of the Advection Problem with Closed Characteristics , 1998, SIAM J. Sci. Comput..

[18]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[19]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[20]  Bram van Leer,et al.  Upwind-difference methods for aerodynamic problems governed by the Euler equations , 1985 .

[21]  Cornelis W. Oosterlee,et al.  Multigrid Line Smoothers for Higher Order Upwind Discretizations of Convection-Dominated Problems , 1998 .

[22]  Anton Schüller,et al.  Multigrid Efficiency for Complex Flow Simulations on Distributed Memory Machines , 1993, Parallel Comput..

[23]  Cornelis W. Oosterlee,et al.  FLUX DIFFERENCE SPLITTING FOR THREE-DIMENSIONAL STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN CURVILINEAR CO-ORDINATES , 1996 .

[24]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .