High- ${Q}$ Butterfly-Shaped AlN Lamb Wave Resonators

Butterfly-shaped aluminum nitride (AlN) plates with anchor-to-plate angle smaller than 90° are proposed to boost the quality factor (<inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>) of Lamb wave resonators (LWRs) thanks to the elimination of the anchor loss. Finite-element method simulation shows that the butterfly-shaped plate can efficiently reduce mechanical energy leakage via the supporting anchors and accordingly enhance the mechanical <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>. Furthermore, the rounded butterfly-shaped LWRs show better suppression in the anchor loss in comparison with the beveled butterfly-shaped LWRs. More specifically, the measured frequency response of an 863-MHz beveled butterfly-shaped AlN LWR yields an unloaded <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula> of 4189, representing 25% improvement over an LWR on a rectangular AlN plate; another AlN LWR based on the rounded butterfly-shaped plate shows an unloaded <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula> of 5352, enabling 60% improvement in unloaded <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula> values.

[1]  Reza Abdolvand,et al.  In-plane acoustic reflectors for reducing effective anchor loss in lateral–extensional MEMS resonators , 2011 .

[2]  A. Pisano,et al.  Piezoelectric Aluminum Nitride Vibrating Contour-Mode MEMS Resonators , 2006, Journal of Microelectromechanical Systems.

[3]  Gianluca Piazza,et al.  Analytical and Numerical Methods to Model Anchor Losses in 65-MHz AlN Contour Mode Resonators , 2016, Journal of Microelectromechanical Systems.

[4]  Ventsislav Yantchev,et al.  Thin film Lamb wave resonators in frequency control and sensing applications: a review , 2013 .

[5]  Y. Gu,et al.  A High Coupling Coefficient 2.3-GHz AlN Resonator for High Band LTE Filtering Application , 2016, IEEE Electron Device Letters.

[6]  Gianluca Piazza,et al.  A Study on the Effects of Release Area on the Quality Factor of Contour-Mode Resonators by Laser Doppler Vibrometry , 2017, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[7]  A. Pisano,et al.  Theoretical study of thermally stable SiO2/AlN/SiO2 Lamb wave resonators at high temperatures , 2014 .

[8]  Yung-Yu Chen,et al.  AlN/3C–SiC Composite Plate Enabling High‐Frequency and High‐Q Micromechanical Resonators , 2012, Advanced materials.

[9]  C. Nguyen,et al.  MEMS technology for timing and frequency control , 2005, Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005..

[10]  J. Zou Electrode Design of AlN Lamb Wave Resonators , 2016 .

[11]  A. Pisano,et al.  Temperature compensation of the AlN Lamb wave resonators utilizing the S1 mode , 2015, 2015 IEEE International Ultrasonics Symposium (IUS).

[12]  J. D. Larson,et al.  Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[13]  G. Piazza,et al.  Anchor Losses in AlN Contour Mode Resonators , 2015, Journal of Microelectromechanical Systems.

[14]  Wei Pang,et al.  Transverse Mode Spurious Resonance Suppression in Lamb Wave MEMS Resonators: Theory, Modeling, and Experiment , 2015, IEEE Transactions on Electron Devices.

[15]  David Bindel,et al.  Elastic PMLs for resonator anchor loss simulation , 2005 .

[16]  Gianluca Piazza,et al.  Quality Factor Dependence on the Inactive Regions in AlN Contour-Mode Resonators , 2015, Journal of microelectromechanical systems.

[17]  Albert P. Pisano,et al.  High-Q aluminum nitride Lamb wave resonators with biconvex edges , 2011 .

[18]  C. S. Lam,et al.  Transducer design for AlN Lamb wave resonators , 2017 .

[19]  Ventsislav Yantchev,et al.  Micromachined One-Port Aluminum Nitride Lamb Wave Resonators Utilizing the Lowest-Order Symmetric Mode , 2014, Journal of Microelectromechanical Systems.