Semiclassical and quantum Liouville theory on the sphere
暂无分享,去创建一个
[1] E. Tonni,et al. Standard and geometric approaches to quantum Liouville theory on the pseudosphere , 2004, hep-th/0406014.
[2] G. Jorjadze,et al. The Liouville Field Theory Zero-Mode Problem , 2004 .
[3] E. Tonni,et al. The tetrahedron graph in Liouville theory on the pseudosphere , 2003, hep-th/0311234.
[4] G. Jorjadze,et al. Correlation functions and vertex operators of Liouville theory , 2003, hep-th/0311202.
[5] J. Teschner. From Liouville theory to the quantum geometry of Riemann surfaces , 2003, hep-th/0308031.
[6] J. Teschner. A lecture on the Liouville vertex operators , 2003, hep-th/0303150.
[7] Leon A. Takhtajan,et al. Hyperbolic 2-spheres with conical singularities, accessory parameters and Kähler metrics on {{ℳ}}_{0,} , 2002 .
[8] L. Cantini,et al. Liouville theory, accessory parameters and (2+1)-dimensional gravity , 2002, hep-th/0203103.
[9] L. Cantini,et al. Proof of Polyakov conjecture for general elliptic singularities , 2001, hep-th/0105081.
[10] A. Zamolodchikov,et al. Liouville field theory on a pseudosphere , 2001 .
[11] V. Fateev,et al. Boundary Liouville Field Theory I. Boundary State and Boundary Two-point Function , 2000, hep-th/0001012.
[12] L. Takhtajan. EQUIVALENCE OF GEOMETRIC h 25 APPROACHES TO TWO-DIMENSIONAL QUANTUM GRAVITY , 1995, hep-th/9509026.
[13] J. Teschner. On the Liouville three point function , 1995, hep-th/9507109.
[14] A. Zamolodchikov,et al. Conformal bootstrap in Liouville field theory , 1995 .
[15] L. Takhtajan. Topics in Quantum Geometry of Riemann Surfaces: Two-Dimensional Quantum Gravity , 1994, hep-th/9409088.
[16] H. Dorn,et al. Two and three point functions in Liouville theory , 1994, hep-th/9403141.
[17] G. Aeppli,et al. Proceedings of the International School of Physics Enrico Fermi , 1994 .
[18] J. Gervais,et al. Exact quantum three-point function of Liouville highest weight states , 1988 .
[19] L. A. Takhtadzhyan,et al. ON LIOUVILLE'S EQUATION, ACCESSORY PARAMETERS, AND THE GEOMETRY OF TEICHMÜLLER SPACE FOR RIEMANN SURFACES OF GENUS 0 , 1988 .
[20] L. A. Takhtadzhyan,et al. ON UNIFORMIZATION OF RIEMANN SURFACES AND THE WEIL-PETERSSON METRIC ON TEICHMÜLLER AND SCHOTTKY SPACES , 1988 .
[21] J. Gervais,et al. Construction of constant curvature punctured Riemann surfaces with particle-scattering interpretation , 1988 .
[22] R. Jackiw,et al. SO(2,1) Invariant Quantization of the Liouville Theory , 1983 .
[23] E. Braaten,et al. Nonperturbative Weak Coupling Analysis of the Liouville Quantum Field Theory , 1983 .
[24] T. Curtright,et al. An Exact Operator Solution of the Quantum Liouville Field Theory , 1983 .
[25] Orlando Alvarez,et al. Theory of Strings with Boundaries: Fluctuations, Topology, and Quantum Geometry , 1983 .
[26] R. Jackiw,et al. Classical and quantal Liouville field theory , 1982 .
[27] T. Curtright,et al. Conformally Invariant Quantization of the Liouville Theory. , 1982 .
[28] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[29] J. Hadamard,et al. Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .
[30] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.