Semiclassical and quantum Liouville theory on the sphere

[1]  E. Tonni,et al.  Standard and geometric approaches to quantum Liouville theory on the pseudosphere , 2004, hep-th/0406014.

[2]  G. Jorjadze,et al.  The Liouville Field Theory Zero-Mode Problem , 2004 .

[3]  E. Tonni,et al.  The tetrahedron graph in Liouville theory on the pseudosphere , 2003, hep-th/0311234.

[4]  G. Jorjadze,et al.  Correlation functions and vertex operators of Liouville theory , 2003, hep-th/0311202.

[5]  J. Teschner From Liouville theory to the quantum geometry of Riemann surfaces , 2003, hep-th/0308031.

[6]  J. Teschner A lecture on the Liouville vertex operators , 2003, hep-th/0303150.

[7]  Leon A. Takhtajan,et al.  Hyperbolic 2-spheres with conical singularities, accessory parameters and Kähler metrics on {{ℳ}}_{0,} , 2002 .

[8]  L. Cantini,et al.  Liouville theory, accessory parameters and (2+1)-dimensional gravity , 2002, hep-th/0203103.

[9]  L. Cantini,et al.  Proof of Polyakov conjecture for general elliptic singularities , 2001, hep-th/0105081.

[10]  A. Zamolodchikov,et al.  Liouville field theory on a pseudosphere , 2001 .

[11]  V. Fateev,et al.  Boundary Liouville Field Theory I. Boundary State and Boundary Two-point Function , 2000, hep-th/0001012.

[12]  L. Takhtajan EQUIVALENCE OF GEOMETRIC h 25 APPROACHES TO TWO-DIMENSIONAL QUANTUM GRAVITY , 1995, hep-th/9509026.

[13]  J. Teschner On the Liouville three point function , 1995, hep-th/9507109.

[14]  A. Zamolodchikov,et al.  Conformal bootstrap in Liouville field theory , 1995 .

[15]  L. Takhtajan Topics in Quantum Geometry of Riemann Surfaces: Two-Dimensional Quantum Gravity , 1994, hep-th/9409088.

[16]  H. Dorn,et al.  Two and three point functions in Liouville theory , 1994, hep-th/9403141.

[17]  G. Aeppli,et al.  Proceedings of the International School of Physics Enrico Fermi , 1994 .

[18]  J. Gervais,et al.  Exact quantum three-point function of Liouville highest weight states , 1988 .

[19]  L. A. Takhtadzhyan,et al.  ON LIOUVILLE'S EQUATION, ACCESSORY PARAMETERS, AND THE GEOMETRY OF TEICHMÜLLER SPACE FOR RIEMANN SURFACES OF GENUS 0 , 1988 .

[20]  L. A. Takhtadzhyan,et al.  ON UNIFORMIZATION OF RIEMANN SURFACES AND THE WEIL-PETERSSON METRIC ON TEICHMÜLLER AND SCHOTTKY SPACES , 1988 .

[21]  J. Gervais,et al.  Construction of constant curvature punctured Riemann surfaces with particle-scattering interpretation , 1988 .

[22]  R. Jackiw,et al.  SO(2,1) Invariant Quantization of the Liouville Theory , 1983 .

[23]  E. Braaten,et al.  Nonperturbative Weak Coupling Analysis of the Liouville Quantum Field Theory , 1983 .

[24]  T. Curtright,et al.  An Exact Operator Solution of the Quantum Liouville Field Theory , 1983 .

[25]  Orlando Alvarez,et al.  Theory of Strings with Boundaries: Fluctuations, Topology, and Quantum Geometry , 1983 .

[26]  R. Jackiw,et al.  Classical and quantal Liouville field theory , 1982 .

[27]  T. Curtright,et al.  Conformally Invariant Quantization of the Liouville Theory. , 1982 .

[28]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[29]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[30]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.