A Diffusion Process Perspective on Posterior Contraction Rates for Parameters
暂无分享,去创建一个
[1] G. Lecu'e,et al. Learning with semi-definite programming: statistical bounds based on fixed point analysis and excess risk curvature , 2020, J. Mach. Learn. Res..
[2] Michael I. Jordan,et al. Understanding the acceleration phenomenon via high-resolution differential equations , 2018, Mathematical Programming.
[3] Dmitrii Ostrovskii,et al. Finite-sample Analysis of M-estimators using Self-concordance , 2018, 1810.06838.
[4] S. Gadat,et al. On the cost of Bayesian posterior mean strategy for log-concave models , 2020, 2010.06420.
[5] Michael I. Jordan,et al. Instability, Computational Efficiency and Statistical Accuracy , 2020, ArXiv.
[6] G. A. Young,et al. High‐dimensional Statistics: A Non‐asymptotic Viewpoint, Martin J.Wainwright, Cambridge University Press, 2019, xvii 552 pages, £57.99, hardback ISBN: 978‐1‐1084‐9802‐9 , 2020, International Statistical Review.
[7] Michael I. Jordan,et al. Singularity, misspecification and the convergence rate of EM , 2018, The Annals of Statistics.
[8] Yuxin Chen,et al. Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution , 2017, Found. Comput. Math..
[9] Michael I. Jordan,et al. On Approximate Thompson Sampling with Langevin Algorithms , 2020, ICML.
[10] Yining Wang,et al. Convergence Rates of Latent Topic Models Under Relaxed Identifiability Conditions , 2017, Electronic Journal of Statistics.
[11] Nhat Ho,et al. Singularity Structures and Impacts on Parameter Estimation in Finite Mixtures of Distributions , 2016, SIAM J. Math. Data Sci..
[12] Alain Durmus,et al. High-dimensional Bayesian inference via the unadjusted Langevin algorithm , 2016, Bernoulli.
[13] Soumendu Sundar Mukherjee,et al. Weak convergence and empirical processes , 2019 .
[14] Stephen P. Boyd,et al. A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights , 2014, J. Mach. Learn. Res..
[15] Jessica Fuerst,et al. Stochastic Differential Equations And Applications , 2016 .
[16] Nhat Ho,et al. Convergence rates of parameter estimation for some weakly identifiable finite mixtures , 2016 .
[17] É. Moulines,et al. Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm , 2015, 1507.05021.
[18] Yun Yang,et al. Minimax-optimal nonparametric regression in high dimensions , 2014, 1401.7278.
[19] Po-Ling Loh,et al. Regularized M-estimators with nonconvexity: statistical and algorithmic theory for local optima , 2013, J. Mach. Learn. Res..
[20] A. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log‐concave densities , 2014, 1412.7392.
[21] Martin J. Wainwright,et al. Statistical guarantees for the EM algorithm: From population to sample-based analysis , 2014, ArXiv.
[22] Debdeep Pati,et al. ANISOTROPIC FUNCTION ESTIMATION USING MULTI-BANDWIDTH GAUSSIAN PROCESSES. , 2011, Annals of statistics.
[23] M. Ledoux,et al. Logarithmic Sobolev Inequalities , 2014 .
[24] Chao Gao,et al. Rate exact Bayesian adaptation with modified block priors , 2013, 1312.3937.
[25] D. Dunson,et al. Bayesian Manifold Regression , 2013, 1305.0617.
[26] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[27] XuanLong Nguyen. Borrowing strength in hierarchical Bayes: convergence of the Dirichlet base measure , 2013, ArXiv.
[28] S. Ghosal,et al. Adaptive Bayesian multivariate density estimation with Dirichlet mixtures , 2011, 1109.6406.
[29] X. Nguyen. Convergence of latent mixing measures in finite and infinite mixture models , 2011, 1109.3250.
[30] V. Spokoiny. Parametric estimation. Finite sample theory , 2011, 1111.3029.
[31] Van Der Vaart,et al. The Bernstein-Von-Mises theorem under misspecification , 2012 .
[32] K. Mengersen,et al. Asymptotic behaviour of the posterior distribution in overfitted mixture models , 2011 .
[33] J. H. Zanten,et al. Adaptive nonparametric Bayesian inference using location-scale mixture priors , 2010, 1211.2121.
[34] S. Sharma,et al. The Fokker-Planck Equation , 2010 .
[35] J. Rousseau. Rates of convergence for the posterior distributions of mixtures of betas and adaptive nonparamatric estimation of the density , 2010, 1001.1615.
[36] D. Bakry,et al. A simple proof of the Poincaré inequality for a large class of probability measures , 2008 .
[37] R. Adamczak. A tail inequality for suprema of unbounded empirical processes with applications to Markov chains , 2007, 0709.3110.
[38] S. Walker,et al. On rates of convergence for posterior distributions in infinite-dimensional models , 2007, 0708.1892.
[39] A. V. D. Vaart,et al. Posterior convergence rates of Dirichlet mixtures at smooth densities , 2007, 0708.1885.
[40] A. V. D. Vaart,et al. Misspecification in infinite-dimensional Bayesian statistics , 2006, math/0607023.
[41] S. Walker. New approaches to Bayesian consistency , 2004, math/0503672.
[42] M. Stephens,et al. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.
[43] S. Walker. On sufficient conditions for Bayesian consistency , 2003 .
[44] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[45] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[46] Lancelot F. James,et al. Bayesian Model Selection in Finite Mixtures by Marginal Density Decompositions , 2001 .
[47] A. V. D. Vaart,et al. Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities , 2001 .
[48] S. R. Jammalamadaka,et al. Empirical Processes in M-Estimation , 2001 .
[49] L. Wasserman,et al. Rates of convergence of posterior distributions , 2001 .
[50] P. Donnelly,et al. Inference of population structure using multilocus genotype data. , 2000, Genetics.
[51] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[52] L. Wasserman,et al. The consistency of posterior distributions in nonparametric problems , 1999 .
[53] R. Tweedie,et al. Exponential convergence of Langevin distributions and their discrete approximations , 1996 .
[54] M. Talagrand. Transportation cost for Gaussian and other product measures , 1996 .
[55] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[56] Jiahua Chen. Optimal Rate of Convergence for Finite Mixture Models , 1995 .
[57] B. Lindsay. Mixture models : theory, geometry, and applications , 1995 .
[58] Boris Polyak,et al. Acceleration of stochastic approximation by averaging , 1992 .
[59] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[60] Grace L. Yang,et al. On Bayes Procedures , 1990 .
[61] P. Hall,et al. Optimal Rates of Convergence for Deconvolving a Density , 1988 .
[62] S. Amari. Asymptotic Theory of Estimation , 1985 .
[63] D. Freedman. On the Asymptotic Behavior of Bayes' Estimates in the Discrete Case , 1963 .