Probabilistic scheme for laser based motion detection

This paper presents a motion detection scheme using laser scanners mounted on a mobile vehicle. We propose a stable, yet simple motion detection scheme that can be used and improved with tracking and classification procedures. The salient contribution of the developed architecture is twofold. It proposes a spatio-temporal correspondence procedure based on a scan registration algorithm. The detection is cast as a probability decision problem that accounts for sensor noise and achieves robust classification. Probabilistic occlusion checking is finally performed to improve robustness. Experimental results show the performance of the proposed architecture under different settings in urban environments.

[1]  Xing Chen,et al.  An occlusion metric for selecting robust camera configurations , 2008, Machine Vision and Applications.

[2]  Klaus C. J. Dietmayer,et al.  Spatio-temporal Segmentation Using Laserscanner and Video Sequences , 2004, DAGM-Symposium.

[3]  Eduardo Mario Nebot,et al.  Recursive scan-matching SLAM , 2007, Robotics Auton. Syst..

[4]  K. Madhava Krishna,et al.  Detection, Tracking and Avoidance of Multiple Dynamic Objects , 2002, J. Intell. Robotic Syst..

[5]  Zehang Sun,et al.  On-road vehicle detection: a review , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization, Mapping and Moving Object Tracking , 2007, Int. J. Robotics Res..

[7]  Wolfram Burgard,et al.  People Tracking with Mobile Robots Using Sample-Based Joint Probabilistic Data Association Filters , 2003, Int. J. Robotics Res..

[8]  Samuel S. Blackman,et al.  Design and Analysis of Modern Tracking Systems , 1999 .

[9]  Juan I. Nieto,et al.  Multiple target tracking using Sequential Monte Carlo Methods and statistical data association , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[10]  Erwin Prassler,et al.  Tracking Multiple Moving Objects for Real-Time Robot Navigation , 2000, Auton. Robots.

[11]  Sebastian Thrun,et al.  A Non-rigid Approach to Scan Alignment and Change Detection Using Range Sensor Data , 2005, FSR.

[12]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[14]  Ajo Fod,et al.  Laser-Based People Tracking , 2002 .

[15]  K. Dietmayer,et al.  Object tracking and classification using a multiple hypothesis approach , 2004, IEEE Intelligent Vehicles Symposium, 2004.