The GRAVITY Young Stellar Object survey. I. Probing the disks of Herbig Ae/Be stars in terrestrial orbits

Context. The formation and the evolution of protoplanetary disks are important stages in the lifetime of stars. Terrestrial planets form or migrate within the innermost regions of these protoplanetary disks and so, the processes of disk evolution and planet formation are intrinsically linked. Studies of the dust distribution, composition, and evolution of these regions are crucial to understanding planet formation. Aims: We built a homogeneous observational dataset of Herbig Ae/Be disks with the aim of spatially resolving the sub au-scale region to gain a statistical understanding of their morphological and compositional properties, in addition to looking for correlations with stellar parameters, such as luminosity, mass, and age. Methods: We observed 27 Herbig Ae/Be stars with the GRAVITY instrument installed at the combined focus of the Very Large Telescope Interferometer (VLTI) and operating in the near-infrared K-band, focused on the K-band thermal continuum, which corresponds to stellar flux reprocessed by the dust grains. Our sample covers a large range of effective temperatures, luminosities, masses, and ages for the intermediate-mass star population. The circumstellar disks in our sample also cover a range of various properties in terms of reprocessed flux, flared or flat morphology, and gaps. We developed semi-physical geometrical models to fit our interferometric data. Results: Our best-fit models correspond to smooth and wide rings that support previous findings in the H-band, implying that wedge-shaped rims at the dust sublimation edge are favored. The measured closure phases are generally non-null with a median value of 10°, indicating spatial asymmetries of the intensity distributions. Multi-size grain populations could explain the closure phase ranges below 20-25° but other scenarios should be invoked to explain the largest ones. Our measurements extend the Radius-Luminosity relation to 104 L⊙ luminosity values and confirm the significant spread around the mean relation observed by PIONIER in the H-band. Gapped sources exhibit a large N-to-K band size ratio and large values of this ratio are only observed for the members of our sample that would be older than 1 Ma, less massive, and with lower luminosity. In the mass range of 2 M⊙, we do observe a correlation in the increase of the relative age with the transition from group II to group I, and an increase of the N-to-K size ratio. However, the size of the current sample does not yet permit us to invoke a clear, universal evolution mechanism across the Herbig Ae/Be mass range. The measured locations of the K-band emission in our sample suggest that these disks might be structured by forming young planets, rather than by depletion due to EUV, FUV, and X-ray photo-evaporation. GTO programs with run ID: 0103.C-0347; 0102.C-0408; 0101.C-0311; 0100.C-0278; 099.C-0667.

S. Rabien | P. T. de Zeeuw | T. Paumard | Santiago | S. Kendrew | L. Jocou | Dublin Institute for Advanced Studies | Ireland | Porto | Portugal | R. Abuter | France | K. Perraut | Munchen | G. Duvert | A. Amorim | V. Coudé du Foresto | A. Eckart | G. Rousset | Lisboa | R. Genzel | E. Wieprecht | H. Bonnet | P. Kervella | S. Gillessen | T. Henning | S. Scheithauer | G. Perrin | C. Straubmeier | X. Haubois | Z. Hubert | M. Wiest | R. Garcia-Lopez | I. Wank | L. Labadie | J. Woillez | F. Haussmann | E. van Dishoeck | S. Yazici | F. Cantalloube | F. Eisenhauer | J. Dexter | F. Widmann | E. Wiezorrek | J.-P. Berger | E. Gendron | A. Buron | Institute for Astronomy | W. Brandner | C. Dougados | O. Pfuhl | Sorbonne Paris Cit'e | T. Ott | E. Sturm | M. Koutoulaki | O. Straub | I. Waisberg | S. Lacour | Instituto Superior T'ecnico | O. Paris | Baltimore. | 17 Konigstuhl | Cnrs | U. Hawaii | B. Lazareff | G. Perrin | E. Observatory | J. Pineda | P. Caselli | G. Rousset | R. Abuter | T. Henning | W. Brandner | S. Lacour | J. Woillez | H. Bonnet | W. Thi | T. Ray | E. V. Dishoeck | J. Berger | G. Duvert | A. Eckart | E. Gendron | S. Kendrew | M. F. Astronomy | R. Genzel | J. Dexter | S. Hippler | C.-C. Lin | F. Eisenhauer | R. Garcia-Lopez | T. Paumard | P. Kervella | U. G. Alpes | Ipag | D. D. Astronom'ia | Chile. | K. Perraut | M. Benisty | R. Grellmann | A. M'erand | L. Labadie | S. Gillessen | T. Ott | S. Rabien | U. Diderot | Centra | E. Sturm | Mexico. | H. Linz | F. Cantalloube | O. Pfuhl | C. Dougados | F. Gao | D. Segura-Cox | M. Horrobin | J. Le Bouquin | E. Wieprecht | E. Wiezorrek | J. Bouvier | Koln | I. Institut | A. Bik | U. Porto | Unidad Mixta Internacional Franco-Chilena de Astronom'ia | Lesia | P. Caselli | B. Lazareff | M. Benisty | S. Hippler | E. V. van Dishoeck | J. Bouvier | P. Garcia | F. Gao | M. Horrobin | F. Vincent | P. D. Zeeuw | R. Garcia Lopez | A. Caratti o Garatti | L. Klarmann | J. Sanchez-Bermudez | R. Grellmann | J.-B. Le Bouquin | C. Rau | Usa | L. Jocou | A. Amorim | P. Garcia | X. Haubois | J. Shangguan | S. Scheithauer | J. Stadler | O. Straub | C. Straubmeier | F. Vincent | I. Waisberg | F. Widmann | S. Yazici | V. Coudé du Foresto | Z. Hubert | A. Buron | Y. Cl'enet | P. Gordo | F. Haussmann | P. L'ena | C. Rau | J. Sanchez-Bermudez | I. Wank | M. Wiest | F. Vincent | U. Koln | A. Mérand | I. D. Astronom'ia | Universidad Nacional Autnoma de M'exico | W. Brandner | G. Rousset | L. Klarmann | A. Caratti o Garatti | M. Koutoulaki | F. Eupen | A. C. O. Garatti | Space Telescope Science Institute | Y. Clénet | P. Gordo | P. Léna | Giessenbachstrasse | Centro de Astrof'isica e Gravitaccao | Universidade de Lisboa - Faculdade de Ciencias | Sorbonne Universit'es | J. Pineda | U. D. Chile | D. Segura-Cox | C.-C. Lin | F. Eupen | T. Ray | J. L. Bouquin | F. Engenharia | Dublin. | P. university | E. S. Agency | R. Fedriani | S. Scheithauer | D. Segura-Cox | Ciudad de M'exico | 06 UPMCUniv.Paris | J. Berger | Max Planck Institute for extraterrestrial Physics | A. M'erand | T. Ott | Germany | L. Labadie | P. Caselli | T. Henning | Y. Cl'enet | J. Bouvier | R. Garcia-Lopez | V. C. D. Foresto | T. Ray | C.-C. Lin | J. Pineda | P. L'ena

[1]  Luca Ricci,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). VII. The Planet–Disk Interactions Interpretation , 2018, The Astrophysical Journal.

[2]  A. Königl,et al.  A DISK-WIND MODEL FOR THE NEAR-INFRARED EXCESS EMISSION IN PROTOSTARS , 2012, 1207.1508.

[3]  H. Shibai,et al.  SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527 , 2016, 1610.06318.

[4]  S. Casassus,et al.  SHADOWS CAST BY A WARP IN THE HD 142527 PROTOPLANETARY DISK , 2014, 1412.4632.

[5]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[6]  C. Haniff An introduction to the theory of interferometry , 2007 .

[7]  Julien H. Girard,et al.  Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE , 2016, 1609.04027.

[8]  T. Fusco,et al.  Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging , 2017, 1702.05108.

[9]  T. Fusco,et al.  Shadows and spirals in the protoplanetary disk HD 100453 , 2016, 1610.10089.

[10]  C. Dullemond,et al.  TIME EVOLUTION OF VISCOUS CIRCUMSTELLAR DISKS DUE TO PHOTOEVAPORATION BY FAR-ULTRAVIOLET, EXTREME-ULTRAVIOLET, AND X-RAY RADIATION FROM THE CENTRAL STAR , 2009, 0909.1836.

[11]  A. Richichi,et al.  Tracing the potential planet-forming regions around seven pre-main-sequence stars , 2009, 0905.0565.

[12]  J. Monnier,et al.  Linking Signatures of Accretion with Magnetic Field Measurements–Line Profiles are not Significantly Different in Magnetic and Non-magnetic Herbig Ae/Be Stars , 2017, 1711.04636.

[13]  Relation between the Luminosity of Young Stellar Objects and Their Circumstellar Environment , 2006, astro-ph/0612039.

[14]  C. Dominik,et al.  Passive Irradiated Circumstellar Disks with an Inner Hole , 2001, astro-ph/0106470.

[15]  M. Langlois,et al.  Evolution of protoplanetary disks from their taxonomy in scattered light: spirals, rings, cavities, and shadows , 2018, Astronomy & Astrophysics.

[16]  J. D. Monnier,et al.  The Inner Regions of Protoplanetary Disks , 2010, 1006.3485.

[17]  J. Szulágyi,et al.  New constraints on the disk characteristics and companion candidates around T Chamaeleontis with VLT/SPHERE , 2017, 1705.03477.

[18]  F. P. Schloerb,et al.  Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars , 2006, astro-ph/0606052.

[19]  U. Exeter,et al.  The Inner Rim of YSO Disks: Effects of Dust Grain Evolution , 2007, astro-ph/0702044.

[20]  R. Abuter,et al.  The GRAVITY fringe tracker , 2019, Astronomy & Astrophysics.

[21]  Stefan Kraus,et al.  The interferometric view of Herbig Ae/Be stars , 2015 .

[22]  M. Langlois,et al.  Dust modeling of the combined ALMA and SPHERE datasets of HD 163296 , 2018, Astronomy & Astrophysics.

[23]  M. Benisty,et al.  RADIATION HYDRODYNAMICS MODELS OF THE INNER RIM IN PROTOPLANETARY DISKS , 2016, 1604.04601.

[24]  M. Benisty,et al.  3D Radiation Nonideal Magnetohydrodynamical Simulations of the Inner Rim in Protoplanetary Disks , 2016, 1612.02740.

[25]  S. Hinkley,et al.  A Multi-instrument and Multi-wavelength High Angular Resolution Study of MWC 614: Quantum Heated Particles Inside the Disk Cavity , 2018, 1803.02419.

[26]  Simon J. E. Radford,et al.  AN OVERVIEW OF THE 2014 ALMA LONG BASELINE CAMPAIGN , 2015, 1504.04877.

[27]  H. McAlister,et al.  Strong Near-Infrared Emission Interior to the Dust Sublimation Radius of Young Stellar Objects MWC 275 and AB Aurigae , 2008, 0803.1484.

[28]  Rafael Millan-Gabet,et al.  Spatially Resolved Circumstellar Structure of Herbig Ae/Be Stars in the Near-Infrared , 2000 .

[29]  F. Ménard,et al.  Cavity and other radial substructures in the disk around HD 97048 , 2016, 1609.02488.

[30]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[31]  F. Ménard,et al.  The newborn planet population emerging from ring-like structures in discs , 2019, Monthly Notices of the Royal Astronomical Society.

[32]  Timothy A. Davis,et al.  THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW , 2015 .

[33]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[34]  M. Min,et al.  Identifying gaps in flaring Herbig Ae/Be disks using spatially resolved mid-infrared imaging - Are all group I disks transitional? , 2013, 1305.3138.

[35]  Vincent Mannings,et al.  A reconsideration of disk properties in Herbig Ae stars , 2001 .

[36]  B. Ercolano,et al.  The dispersal of planet-forming discs: theory confronts observations , 2017, Royal Society Open Science.

[37]  Zhaohuan Zhu,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). II. Characteristics of Annular Substructures , 2018, The Astrophysical Journal.

[38]  Sascha P. Quanz,et al.  Disks around T Tauri Stars with SPHERE (DARTTS-S). I. SPHERE/IRDIS Polarimetric Imaging of Eight Prominent T Tauri Disks , 2018, The Astrophysical Journal.

[39]  M. Min,et al.  DUST EVOLUTION IN PROTOPLANETARY DISKS AROUND HERBIG Ae/Be STARS—THE SPITZER VIEW , 2010, 1008.0083.

[40]  U. A. D. Madrid,et al.  VORTICES AND SPIRALS IN THE HD 135344B TRANSITION DISK , 2016, 1607.05775.

[41]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[42]  Philip J. Armitage,et al.  Dynamics of Protoplanetary Disks , 2010, 1011.1496.

[43]  Ž. Ivezić,et al.  Near-Infrared and the Inner Regions of Protoplanetary Disks , 2005, astro-ph/0506154.

[44]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[45]  S. Mohanty,et al.  Inside-out Planet Formation. V. Structure of the Inner Disk as Implied by the MRI , 2017, The Astrophysical Journal.

[46]  C. Waelkens,et al.  The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps , 2015, 1506.03274.

[47]  F. Ménard,et al.  Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region , 2018, The Astrophysical Journal.

[48]  D. Mouillet,et al.  Asymmetric features in the protoplanetary disk MWC 758 , 2015, 1505.05325.

[49]  Julien H. Girard,et al.  SPHERE: the exoplanet imager for the Very Large Telescope , 2019, Astronomy & Astrophysics.

[50]  M. Min,et al.  A 10 μm spectroscopic survey of Herbig Ae star disks: Grain growth and crystallization , 2005, astro-ph/0503507.

[51]  Sascha P. Quanz,et al.  STRUCTURES IN THE PROTOPLANETARY DISK OF HD142527 SEEN IN POLARIZED SCATTERED LIGHT , 2013, 1311.7088.

[52]  R. Oudmaijer,et al.  Gaia DR2 study of Herbig Ae/Be stars , 2018, Astronomy & Astrophysics.

[53]  C. Dominik,et al.  The inner rim structures of protoplanetary discs , 2009, 0908.1692.

[54]  Julien H. Girard,et al.  Multiple rings in the transition disk and companion candidates around RX J1615.3-3255. High contrast imaging with VLT/SPHERE , 2016, 1610.04038.

[55]  J. Szulágyi,et al.  High-resolution ALMA Observations of HD 100546: Asymmetric Circumstellar Ring and Circumplanetary Disk Upper Limits , 2018, The Astrophysical Journal.

[56]  A. Boccaletti,et al.  High-contrast study of the candidate planets and protoplanetary disk around HD 100546 , 2018, Astronomy & Astrophysics.

[57]  The shape of the inner rim in proto-planetary disks , 2005, astro-ph/0503635.

[58]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[59]  F. Ménard,et al.  The Inner Radius of T Tauri Disks Estimated from Near-Infrared Interferometry: The Importance of Scattered Light , 2007, 0712.0012.

[60]  M. Benisty,et al.  Evidence for a massive dust-trapping vortex connected to spirals , 2018, Astronomy & Astrophysics.

[61]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[62]  M. E. van den Ancker,et al.  ISO spectroscopy of circumstellar dust in 14 Herbig Ae/Be systems: Towards an understanding of dust processing , 2001 .

[63]  J. D. Monnier,et al.  The Near-Infrared Size-Luminosity Relations for Herbig Ae/Be Disks , 2005, astro-ph/0502252.

[64]  B. Lazareff,et al.  Structure of Herbig AeBe disks at the milliarcsecond scale: A statistical survey in the H band using PIONIER-VLTI , 2016, 1611.08428.

[65]  J. Fairlamb,et al.  A spectroscopic survey of Herbig Ae/Be stars with X-shooter – I. Stellar parameters and accretion rates , 2015, 1507.05967.

[66]  Rafael Millan-Gabet,et al.  Probing the Inner Disk Emission of the Herbig Ae Stars HD 163296 and HD 190073 , 2018, The Astrophysical Journal.