Feasible Computation with Higher Types

We restrict recursion in finite types so as to characterize the polynomial time computable functions. The restrictions are obtained by enriching the type structure with the formation of types ρ → σ and terms λ $${\bar x^\rho }r$$ ρ r as well as $$\rho \relbar\joinrel\mathrel\circ \sigma $$ and λx ρ r. Here we use two sorts of typed variables: complete ones $${\bar x^\rho }$$ ρ and incomplete ones x ρ.

[1]  Daniel Leivant,et al.  Intrinsic Theories and Computational Complexity , 1994, LCC.

[2]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[3]  Daniel Leivant,et al.  Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.

[4]  Daniel Leivant,et al.  Ramified Recurrence and Computational Complexity IV : Predicative Functionals and Poly-Space , 2000 .

[5]  Anil Nerode,et al.  Logical Foundations of Computer Science, International Symposium, LFCS 2009, Deerfield Beach, FL, USA, January 3-6, 2009. Proceedings , 1994, LFCS.

[6]  Martin Hofmann,et al.  A New "Feasible" Arithmetic , 2002, J. Symb. Log..

[7]  Andre Scedrov,et al.  Bounded Linear Logic , 1991 .

[8]  Jean-Yves Girard Light Linear Logic , 1994, LCC.

[9]  Helmut Schwichtenberg,et al.  Higher type recursion, ramification and polynomial time , 2000, Ann. Pure Appl. Log..

[10]  Andre Scedrov,et al.  Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..

[11]  Daniel Leivant Predicative Recurrence in Finite Types , 1994, LFCS.

[12]  Bruce M. Kapron,et al.  Characterizations of the basic feasible functionals of finite type , 1989, 30th Annual Symposium on Foundations of Computer Science.

[13]  D. Hilbert Über das Unendliche , 1926 .

[14]  Yiannis N. Moschovakis Logic from computer science : proceedings of a workshop held November 13-17, 1989 , 1992 .

[15]  Stephen A. Cook,et al.  Computability and Complexity of Higher Type Functions , 1992 .

[16]  Harold Simmons,et al.  The realm of primitive recursion , 1988, Arch. Math. Log..

[17]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .