Phylogenetic analysis based on the ITS, matK and rbcL DNA barcodes and comparison of chemical contents of twelve Paeonia taxa in Türkiye

[1]  M. Shariati,et al.  A multifunctional key to open a new window on the path to natural resources-lessons from a study on chemical composition and biological capability of Paeonia mascula L. from Turkey , 2022, Food Bioscience.

[2]  S. Arias,et al.  Phylogenetic relationships in Coryphantha and implications on Pelecyphora and Escobaria (Cacteae, Cactoideae, Cactaceae) , 2022, PhytoKeys.

[3]  G. Yao,et al.  Molecular and morphological evidence for a new species of Pogostemon (Lamiaceae) from Hainan Island, China , 2022, PhytoKeys.

[4]  Xinyu Li,et al.  Molecular identification and phylogenetic analysis of Papaver based on ITS2 barcoding , 2021, Journal of forensic sciences.

[5]  Bine Xue,et al.  A second species of Pseuduvaria in China: the identity of the enigmatic species Meiogyne kwangtungensis , 2021, PhytoKeys.

[6]  Lihang Xie,et al.  Phytochemical components and bioactivities of novel medicinal food - Peony roots. , 2020, Food research international.

[7]  Hui Xie,et al.  DNA barcodes for the identification of Stephania (Menispermaceae) species , 2020, Molecular Biology Reports.

[8]  C. Sandalli,et al.  Paeoniflorigenone purified from Paeonia daurica roots potently inhibits viral and bacterial DNA polymerases: investigation by experimental validation and docking simulation , 2019, Medicinal Chemistry Research.

[9]  D. Soltis,et al.  Accelerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae , 2019, bioRxiv.

[10]  M. Ibrar,et al.  Evaluation of Paeonia emodi for its cardioprotective potentials: An investigative study towards possible mechanism. , 2019, Journal of ethnopharmacology.

[11]  G. Zengin,et al.  Paeonia arietina and Paeonia kesrounansis bioactive constituents: NMR, LC‐DAD‐MS fingerprinting and in vitro assays , 2019, Journal of pharmaceutical and biomedical analysis.

[12]  X. Jia,et al.  Capture of anti-coagulant active ingredients from Moutan Cortex by platelet immobilized chromatography and evaluation of anticoagulant activity in rats. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[13]  N. Özhatay Validation of Colchicum erdalii and C. osmaniyense (Colchicaceae) and correction the name of Paeonia × kayae (Paeoniaceae) , 2016 .

[14]  Y. Ji,et al.  Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences. , 2016, Genetics and molecular research : GMR.

[15]  H. Tsai,et al.  Paeoniflorin inhibits excitatory amino acid agonist-and high-dose morphine-induced nociceptive behavior in mice via modulation of N-methyl-D-aspartate receptors , 2016, BMC Complementary and Alternative Medicine.

[16]  Sophie Lorraine Vassou,et al.  DNA barcoding for species identification from dried and powdered plant parts: a case study with authentication of the raw drug market samples of Sida cordifolia. , 2015, Gene.

[17]  J. Silva,et al.  The genetic diversity of Paeonia L. , 2012 .

[18]  Lijia Xu,et al.  Phytochemical and Biological Studies of Paeoniaceae , 2010, Chemistry & biodiversity.

[19]  H. Siddiqui,et al.  Essential oil compositions and antioxidant properties of the roots of twelve Anatolian Paeonia taxa with special reference to chromosome counts , 2010, Pharmaceutical biology.

[20]  W. John Kress,et al.  A DNA barcode for land plants , 2009, Proceedings of the National Academy of Sciences.

[21]  Q. Lin,et al.  Phylogenetic analysis of Paeonia sect. Moutan (Paeoniaceae) based on multiple DNA fragments and morphological data , 2007 .

[22]  R. Thorne How many species of seed plants are there , 2001 .

[23]  C. Rice-Evans,et al.  Antioxidant activity applying an improved ABTS radical cation decolorization assay. , 1999, Free radical biology & medicine.

[24]  Mengcheng Tang,et al.  The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals , 1999 .

[25]  T. Sang,et al.  Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). , 1997, American journal of botany.

[26]  J J Strain,et al.  The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. , 1996, Analytical biochemistry.

[27]  T. Sang,et al.  Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. Yeşilada,et al.  Traditional medicine in Turkey. V. Folk medicine in the inner Taurus Mountains. , 1995, Journal of ethnopharmacology.

[29]  R. Olmstead,et al.  Evidence for the polyphyly of the Scrophulariaceae based on Chloroplast rbcL and ndhF sequences , 1995 .

[30]  A. Wali,et al.  Account of Some Important Edible Medicinal Plants and Their Socio-Economic Importance , 2022, Edible Plants in Health and Diseases.

[31]  D. Soltis,et al.  Accelerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae. , 2019, Molecular phylogenetics and evolution.

[32]  Vanessa Hertzog,et al.  Pcr Protocols A Guide To Methods And Applications , 2016 .

[33]  R. Lamuela-Raventós,et al.  Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent , 1999 .

[34]  H. Tobe,et al.  Phylogenetic Relationships of Betulaceae Based on matK Sequences with Particular Reference to the Position of Ostryopsis , 1998 .

[35]  C. Berset,et al.  Use of a Free Radical Method to Evaluate Antioxidant Activity , 1995 .