Application of NORM to the Multiple Imputation for Multivariate Missing Data

The statistical analysis of incomplete data sometimes requires handling of incomplete observations. Towards this end, each case with some missing values generally should be deleted, namely, resulting in only use of non-missing cases. EM algorithm(Dempster et al., 1977) which involves prediction and estimation steps is a general method among others. In this article, we use the free software NORM developed for multiple imputation, which uses DA(Data Augmentation) algorithm in its imputation, and evaluate its efficiency through a numerical example.