Perturbation Analysis of Eigenvector-Based Target Decomposition Theorems in Radar Polarimetry

A novel analysis of the statistics of the eigendecomposition of the coherency matrix and the H/A/α̅ parameters of polarimetric synthetic aperture radar data is addressed. The objective is to overcome previous approaches that prevented the extraction of information about the sample eigenvectors or restricted the analysis to simulated data. This paper considers a perturbation analysis of the eigendecomposition of the coherency matrix, making it possible to obtain analytical expressions for the sample eigenvalues and their means and variances, the sample mean entropy and anisotropy, the sample eigenvectors and the sample αi angles, as well as for the sample mean alpha angle α̅. All the parameters are shown to be estimated asymptotically non-biased with respect to the number of averaged samples. It is also demonstrated that the sample eigenvectors are more robust than the sample eigenvalues to the presence of speckle. Finally, a simple technique for the precise removal of the entropy bias is presented.

[1]  Carlos López-Martínez,et al.  Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[3]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[4]  Jakob J. van Zyl,et al.  Adaptive Model-Based Decomposition of Polarimetric SAR Covariance Matrices , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Dieter Kraus,et al.  On moments of complex Wishart and complex inverse Wishart distributed matrices , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[6]  Philippe Forster,et al.  Operator approach to performance analysis of root-MUSIC and root-min-norm , 1992, IEEE Trans. Signal Process..

[7]  Carlos López-Martínez,et al.  Model-Based Polarimetric SAR Speckle Filter , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Y. Yamaguchi,et al.  CS-1-4 Four-Component Scattering Model for Polarimetric SAR Image Decomposition based on Covariance Matrix(CS-1. 電磁波計測・イメージングと波動情報処理技術, エレクトロニクス1) , 2005 .

[9]  John A. Tague,et al.  Expectations of useful complex Wishart forms , 1994, Multidimens. Syst. Signal Process..

[10]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[11]  Carlos López-Martínez,et al.  Polarimetric SAR speckle noise model , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  William L. Cameron,et al.  Simulated polarimetric signatures of primitive geometrical shapes , 1996, IEEE Trans. Geosci. Remote. Sens..

[13]  E. Krogager New decomposition of the radar target scattering matrix , 1990 .

[14]  G. W. Stewart,et al.  Computer Science and Scientific Computing , 1990 .

[15]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[16]  Luca Pipia,et al.  Generation of Pol-SAR and POL-in-SAR Data for Homogeneous Distributed Targets Simulation , 2005 .

[17]  Irena Hajnsek,et al.  Polarimetric Speckle Noise Effects in Quantitative Physical parameters Retrieval , 2004 .

[18]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[19]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Thomas L. Ainsworth,et al.  Statistical evaluation and bias removal of multi-look effect on Entropy/ alpha/Anisotropy in polarimetric target decomposition , 2008 .

[21]  Laurent Ferro-Famil,et al.  Scattering-model-based speckle filtering of polarimetric SAR data , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Carlos López-Martínez,et al.  Evaluation and bias removal of multi-look effect on entropy/alpha/anisotropy , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[23]  Carlos López-Martínez,et al.  Filtering and Segmentation of Polarimetric SAR Data Based on Binary Partition Trees , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Yoshio Yamaguchi Four-component scattering power decomposition using coherency matrix , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[25]  S. Quegan,et al.  A statistical description of polarimetric and interferometric synthetic aperture radar data , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[26]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[27]  Jakob J. van Zyl,et al.  Model-Based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative Eigenvalues , 2011, IEEE Transactions on Geoscience and Remote Sensing.