Modern Nonlinear Time Series Methods

Advances in computational power, scientific concepts, and data measurements have led to the development of numerous nonlinear methods to study complex systems normally encountered in various scientific fields. These nonlinear methods often have very different conceptual bases and levels of sophistication and have been found suitable for studying many different types of systems and associated problems. Their relevance to hydrologic systems and ability to model and predict the salient characteristics of hydrologic systems have led to their extensive applications in hydrology over the past three decades or so. This chapter presents an overview of some of the very popular nonlinear methods that have found widespread applications in hydrology. The methods include: nonlinear stochastic methods, data-based mechanistic models, artificial neural networks, support vector machines, wavelets, evolutionary computing, fuzzy logic, entropy-based techniques, and chaos theory. For each method, the presentation includes a description of the conceptual basis and examples of applications in hydrology.

[1]  Witold F. Krajewski,et al.  Rainfall forecasting in space and time using a neural network , 1992 .

[2]  V. Singh,et al.  At‐a‐station hydraulic geometry relations, 1: theoretical development , 2008 .

[3]  R. T. Walczak,et al.  Using Support Vector Machines to Develop Pedotransfer Functions for Water Retention of Soils in Poland , 2008 .

[4]  J. Amorocho,et al.  Entropy in the assessment of uncertainty in hydrologic systems and models , 1973 .

[5]  O. Kisi,et al.  A genetic programming approach to suspended sediment modelling , 2008 .

[6]  W. Tych,et al.  BARUMODEL: Combined Data Based Mechanistic models of runoff response in a managed rainforest catchment , 2006 .

[7]  Peter C. Young,et al.  Recursive Estimation and Time-Series Analysis: An Introduction , 1984 .

[8]  Geza Pesti,et al.  A fuzzy rule-based approach to drought assessment , 1996 .

[9]  Konstantine P. Georgakakos,et al.  Chaos in rainfall , 1989 .

[10]  Bellie Sivakumar,et al.  Hydrologic complexity and classification: a simple data reconstruction approach , 2007 .

[11]  Paulin Coulibaly,et al.  Wavelet analysis of variability in annual Canadian streamflows , 2004 .

[12]  Luca Ridolfi,et al.  Nonlinear analysis of river flow time sequences , 1997 .

[13]  A. Simpson,et al.  An Improved Genetic Algorithm for Pipe Network Optimization , 1996 .

[14]  Slobodan P. Simonovic,et al.  Managing Water Resources: Methods and Tools for a Systems Approach , 2008 .

[15]  Jose D. Salas,et al.  Physical Basis of Stochastic Models of Annual Flows , 1981 .

[16]  Asaad Y. Shamseldin,et al.  Neuroemulation: definition and key benefits for water resources research , 2012 .

[17]  Andreas S. Andreou,et al.  Nonlinear analysis and forecasting of a brackish Karstic spring , 2000 .

[18]  V. Singh,et al.  Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces , 2003 .

[19]  Bellie Sivakumar,et al.  Scale-dependent synthetic streamflow generation using a continuous wavelet transform , 2013 .

[20]  Mesut Cayar,et al.  Ensemble average and ensemble variance behavior of unsteady, one-dimensional groundwater flow in unconfined, heterogeneous aquifers: an exact second-order model , 2009 .

[21]  Bellie Sivakumar,et al.  A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers , 2002 .

[22]  MohammadSajjad Khan,et al.  Application of Support Vector Machine in Lake Water Level Prediction , 2006 .

[23]  Bellie Sivakumar,et al.  Nonlinear dynamics and chaos in hydrologic systems: latest developments and a look forward , 2009 .

[24]  Upmanu Lall,et al.  A Nearest Neighbor Bootstrap For Resampling Hydrologic Time Series , 1996 .

[25]  Vijay P. Singh,et al.  Parameter estimation for 3-parameter generalized pareto distribution by the principle of maximum entropy (POME) , 1995 .

[26]  Vijay P. Singh,et al.  An entropy‐based morphological analysis of river basin networks , 1993 .

[27]  Shaun Lovejoy,et al.  DISCUSSION of “Evidence of chaos in the rainfall-runoff process” Which chaos in the rainfall-runoff process? , 2002 .

[28]  Soroosh Sorooshian,et al.  A chaotic approach to rainfall disaggregation , 2001 .

[29]  Li-Chiu Chang,et al.  Fuzzy exemplar‐based inference system for flood forecasting , 2005 .

[30]  J. Amorocho,et al.  Determination of Nonlinear Functional Response Functions in Rainfall-Runoff Processes , 1971 .

[31]  C. Dhanya,et al.  Nonlinear ensemble prediction of chaotic daily rainfall , 2010 .

[32]  G. M. Ochieng',et al.  Data-based mechanistic modelling of stochastic rainfall-flow processes by state dependent parameter estimation , 2009, Environ. Model. Softw..

[33]  Upmanu Lall,et al.  Recent advances in nonparametric function estimation: Hydrologic applications , 1995 .

[34]  Stefano Alvisi,et al.  Fuzzy neural networks for water level and discharge forecasting with uncertainty , 2010, Environ. Model. Softw..

[35]  A. Bárdossy,et al.  Development of a fuzzy logic-based rainfall-runoff model , 2001 .

[36]  Richard C. Peralta,et al.  Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm , 1999 .

[37]  Lucien Duckstein,et al.  Fuzzy Logic in Hydrology and Water Resources , 2004 .

[38]  Bellie Sivakumar,et al.  The more things change, the more they stay the same: the state of hydrologic modelling , 2008 .

[39]  Bryan A. Tolson,et al.  Achieving Water Quality System Reliability Using Genetic Algorithms , 2000 .

[40]  Ni-Bin Chang,et al.  Water pollution control in the river basin by fuzzy genetic algorithm-based multiobjective programming modeling , 1998 .

[41]  P. Khanna,et al.  Genetic algorithm for optimization of water distribution systems , 1999, Environ. Model. Softw..

[42]  Peter A. Whigham,et al.  Predicting chlorophyll-a in freshwater lakes by hybridising process-based models and genetic algorithms , 2001 .

[43]  Ozgur Kisi,et al.  A wavelet-support vector machine conjunction model for monthly streamflow forecasting , 2011 .

[44]  A. Rényi On Measures of Entropy and Information , 1961 .

[45]  Vijay P. Singh,et al.  A real-time flood forecasting model based on maximum-entropy spectral analysis: I. Development , 1993 .

[46]  Vladan Babovic,et al.  EVOLUTIONARY COMPUTING IN HYDROLOGY , 2010 .

[47]  Peter C. Young,et al.  A unified approach to environmental systems modeling , 2009 .

[48]  J. L. Ayuso,et al.  Water distribution network optimization using a modified genetic algorithm , 1999 .

[49]  R. S. Govindaraju,et al.  Artificial Neural Networks in Hydrology , 2010 .

[50]  José-Carlos Araújo Entropy‐based equation to assess hillslope sediment production , 2007 .

[51]  Peter C. Young,et al.  Parallel Processes in Hydrology and Water Quality: A Unified Time‐Series Approach , 1992 .

[52]  W. C. Lennox,et al.  Groups and neural networks based streamflow data infilling procedures , 2001 .

[53]  Yves Meyer,et al.  Progress in wavelet analysis and applications , 1993 .

[54]  Lotfi A. Zadeh,et al.  Fuzzy Algorithms , 1968, Inf. Control..

[55]  Demetris Koutsoyiannis,et al.  Discussion of “Generalized regression neural networks for evapotranspiration modelling” , 2007 .

[56]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[57]  Holger R. Maier,et al.  Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications , 2000, Environ. Model. Softw..

[58]  Peter C. Young,et al.  Uncertainty , sensitivity analysis and the role of data based mechanistic modeling in hydrology , 2006 .

[59]  Ravi S. Nanjundiah,et al.  Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine , 2008 .

[60]  Lucien Duckstein,et al.  Fuzzy conceptual rainfall–runoff models , 2001 .

[61]  Regression Analysis of Nonlinear Catchment Systems , 1971 .

[62]  M. J. Lees,et al.  Data-based mechanistic modelling and forecasting of hydrological systems , 2000 .

[63]  牛俊,et al.  A comprehensive analysis of terrestrial hydrological processes over the Pearl River basin in South China , 2010 .

[64]  Vijay P. Singh,et al.  Entropy theory for movement of moisture in soils , 2010 .

[65]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[66]  Kazuaki Hiramatsu,et al.  A comparison of techniques for hydrograph recession analysis , 2004 .

[67]  Hafzullah Aksoy,et al.  Nonparametric streamflow simulation by wavelet or Fourier analysis , 2001 .

[68]  T. A. McMahon,et al.  Stochastic Simulation of Daily Rainfall for Australian Stations , 1983 .

[69]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[70]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[71]  Faisal Hossain,et al.  Spatial pattern of arsenic contamination in shallow wells of Bangladesh: regional geology and nonlinear dynamics , 2006 .

[72]  David Labat,et al.  Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. , 2010 .

[73]  Shie-Yui Liong,et al.  A systematic approach to noise reduction in chaotic hydrological time series , 1999 .

[74]  Upmanu Lall,et al.  Nonlinear dynamics of the Great Salt Lake: system identification and prediction , 1996 .

[75]  Vijay P. Singh,et al.  Entropy Theory and its Application in Environmental and Water Engineering: Singh/Entropy Theory and its Application in Environmental and Water Engineering , 2013 .

[76]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1993 .

[77]  Bellie Sivakumar,et al.  Correlation dimension estimation of hydrological series and data size requirement: myth and reality/Estimation de la dimension de corrélation de séries hydrologiques et taille nécessaire du jeu de données: mythe et réalité , 2005 .

[78]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[79]  M. Hannan,et al.  Social Dynamics: Models and Methods. , 1986 .

[80]  Vijay P. Singh,et al.  Downstream hydraulic geometry relations: 1. Theoretical development , 2003 .

[81]  M. Fiorentino,et al.  A HISTORICAL PERSPECTIVE OF ENTROPY APPLICATIONS IN WATER RESOURCES , 1992 .

[82]  Rao S. Govindaraju Stochastic Methods in Subsurface Contaminant Hydrology , 2002 .

[83]  Chao-Lin Chiu Application of Entropy Concept in Open‐Channel Flow Study , 1991 .

[84]  Vijay P. Singh,et al.  A univariate model for long-term streamflow forecasting , 1991 .

[85]  A. W. Jayawardena,et al.  Use of Radial Basis Function Type Artificial Neural Networks for Runoff Simulation , 1998 .

[86]  C. T. Dhanya,et al.  Multivariate nonlinear ensemble prediction of daily chaotic rainfall with climate inputs , 2011 .

[87]  C. W. Chan,et al.  Modelling of river discharges and rainfall using radial basis function networks based on support vector regression , 2003, Int. J. Syst. Sci..

[88]  Lucien Duckstein,et al.  Relationship Between Monthly Atmospheric Circulation Patterns and Precipitation: Fuzzy Logic and Regression Approaches , 1996 .

[89]  D. Labat,et al.  Rainfall-runoff relations for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses. , 2000 .

[90]  A. K. Lohani,et al.  Deriving stage–discharge–sediment concentration relationships using fuzzy logic , 2007 .

[91]  Zekai Sen,et al.  Genetic algorithms for the classification and prediction of precipitation occurrence , 2001 .

[92]  I. Bogardi,et al.  Application of fuzzy rule-based modeling technique to regional drought , 1999 .

[93]  Peter C. Young,et al.  Identification and estimation of continuous-time, data-based mechanistic (DBM) models for environmental systems , 2006, Environ. Model. Softw..

[94]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[95]  H. Gao,et al.  USE OF A GENETIC ALGORITHM AND MULTI-OBJECTIVE PROGRAMMING FOR CALIBRATION OF A HYDROLOGIC MODEL , 1998 .

[96]  Shujiang Kang,et al.  Wavelet analysis of hydrological and water quality signals in an agricultural watershed , 2007 .

[97]  Bellie Sivakumar,et al.  Dominant processes concept, model simplification and classification framework in catchment hydrology , 2008 .

[98]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[99]  David Labat,et al.  Wavelet analysis of the annual discharge records of the world’s largest rivers , 2008 .

[100]  Peter C. Young,et al.  Real‐Time Updating in Flood Forecasting and Warning , 2010 .

[101]  Ute St. Clair,et al.  Fuzzy Set Theory: Foundations and Applications , 1997 .

[102]  Dimitrios K. Karpouzos,et al.  A multipopulation genetic algorithm to solve the inverse problem in hydrogeology , 2001 .

[103]  Praveen Kumar,et al.  A multicomponent decomposition of spatial rainfall fields: 1. Segregation of large‐ and small‐scale features using wavelet transforms , 1993 .

[104]  Vijay P. Singh,et al.  Entropy-Based Parameter Estimation In Hydrology , 1998 .

[105]  S. L. Jacoby A mathematical model for nonlinear hydrologic systems , 1966 .

[106]  T. Ross Fuzzy Logic with Engineering Applications , 1994 .

[107]  Christian W. Dawson,et al.  Hydrological modelling using artificial neural networks , 2001 .

[108]  Ronny Berndtsson,et al.  Reply to “Which chaos in the rainfall-runoff process?” , 2002 .

[109]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[110]  Wim Sweldens,et al.  An Overview of Wavelet Based Multiresolution Analyses , 1994, SIAM Rev..

[111]  Q. J. Wang The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models , 1991 .

[112]  Asaad Y. Shamseldin,et al.  A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi–Sugeno fuzzy system , 2001 .

[113]  Ozgur Kisi,et al.  River suspended sediment modelling using a fuzzy logic approach , 2006 .

[114]  P. Young,et al.  Simplicity out of complexity in environmental modelling: Occam's razor revisited. , 1996 .

[115]  Peter C. Young,et al.  Data-based mechanistic modelling and the rainfall-flow non-linearity. , 1994 .

[116]  Li-Chiu Chang,et al.  Auto-configuring radial basis function networks for chaotic time series and flood forecasting , 2009 .

[117]  R. P. Oliveira,et al.  Operating rules for multireservoir systems , 1997 .

[118]  Faisal Hossain,et al.  Is correlation dimension a reliable proxy for the number of dominant influencing variables for modeling risk of arsenic contamination in groundwater? , 2008 .

[119]  Upmanu Lall,et al.  Support vector machines for nonlinear state space reconstruction: Application to the Great Salt Lake time series , 2005 .

[120]  Nitin Muttil,et al.  Discharge Rating Curve Extension – A New Approach , 2005 .

[121]  Paolo D'Odorico,et al.  Soil nutrient cycles as a nonlinear dynamical system , 2004 .

[122]  I. Rodríguez‐Iturbe,et al.  Random Functions and Hydrology , 1984 .

[123]  Chuntian Cheng,et al.  Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration , 2002 .

[124]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[125]  Vladan Babovic,et al.  GENETIC PROGRAMMING: A NEW PARADIGM IN RAINFALL RUNOFF MODELING 1 , 2002 .

[126]  Kuolin Hsu,et al.  Improved streamflow forecasting using self-organizing radial basis function artificial neural networks , 2004 .

[127]  M. Levent Kavvas,et al.  Nonlinear Hydrologic Processes: Conservation Equations for Determining Their Means and Probability Distributions , 2003 .

[128]  Shie-Yui Liong,et al.  FLOOD STAGE FORECASTING WITH SUPPORT VECTOR MACHINES 1 , 2002 .

[129]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[130]  R. Abrahart,et al.  Neural Networks for Hydrological Modeling , 2004 .

[131]  W. L. Lane,et al.  Applied Modeling of Hydrologic Time Series , 1997 .

[132]  R. J. Abrahart,et al.  Modelling sediment transfer in Malawi: comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets , 2001 .

[133]  Bellie Sivakumar,et al.  Solute transport in a heterogeneous aquifer: a search for nonlinear deterministic dynamics , 2005 .

[134]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[135]  Mac McKee,et al.  Support vectors–based groundwater head observation networks design , 2004 .

[136]  S. Ranjithan,et al.  Using genetic algorithms to solve a multiple objective groundwater pollution containment problem , 1994 .

[137]  Sankar K. Pal,et al.  Entropy: a new definition and its applications , 1991, IEEE Trans. Syst. Man Cybern..

[138]  Chih Ted Yang,et al.  Potential Energy and Stream Morphology , 1971 .

[139]  M. Franchini,et al.  Fuzzy unit hydrograph , 2006 .

[140]  Stan Openshaw,et al.  A hybrid multi-model approach to river level forecasting , 2000 .

[141]  Li Chen,et al.  Real-Coded Genetic Algorithm for Rule-Based Flood Control Reservoir Management , 1998 .

[142]  Amin Elshorbagy,et al.  Modelling the dynamics of the evapotranspiration process using genetic programming , 2007 .

[143]  Hikmet Kerem Cigizoglu,et al.  Application of Generalized Regression Neural Networks to Intermittent Flow Forecasting and Estimation , 2005 .

[144]  Vladan Babovic,et al.  Data Mining and Knowledge Discovery in Sediment Transport , 2000 .

[145]  Kuolin Hsu,et al.  Artificial Neural Network Modeling of the Rainfall‐Runoff Process , 1995 .

[146]  K. Chau,et al.  Predicting monthly streamflow using data‐driven models coupled with data‐preprocessing techniques , 2009 .

[147]  V. Singh,et al.  Entropy theory for derivation of infiltration equations , 2010 .

[148]  A. Shamseldin Application of a neural network technique to rainfall-runoff modelling , 1997 .

[149]  Timothy K. Gates,et al.  Planning Reservoir Operations with Imprecise Objectives , 1997 .

[150]  Lucien Duckstein,et al.  Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems , 1995 .

[151]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[152]  Vladan Babovic,et al.  Emergence, evolution, intelligence; hydroinformatics : a study of distributed and decentralisedcomputing using intelligent agents , 1996 .

[153]  Vijay P. Singh,et al.  A real-time flood forecasting model based on maximum-entropy spectral analysis: II. Application , 1993 .

[154]  Peter C. Young,et al.  The data-based mechanistic approach to the modelling, forecasting and control of environmental systems , 2006, Annu. Rev. Control..

[155]  Vijay P. Singh,et al.  Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change , 2011 .

[156]  Ronny Berndtsson,et al.  Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting , 2010 .

[157]  B. Adams,et al.  Integration of artificial neural networks with conceptual models in rainfall-runoff modeling , 2006 .

[158]  Hitoshi Tanaka,et al.  Developing a hybrid multi‐model for peak flood forecasting , 2009 .

[159]  Mark S. Seyfried,et al.  Searching for chaotic dynamics in snowmelt runoff , 1991 .

[160]  Stuart N. Lane,et al.  Assessment of rainfall‐runoff models based upon wavelet analysis , 2007 .

[161]  Peter C. Young,et al.  Identification and Representation of State Dependent Non-linearities in Flood Forecasting Using the DBM Methodology , 2012 .

[162]  Bellie Sivakumar,et al.  An investigation of the presence of low-dimensional chaotic behaviour in the sediment transport phenomenon , 2002 .

[163]  Slobodan P. Simonovic,et al.  Estimation of missing streamflow data using principles of chaos theory , 2002 .

[164]  Diane M. McKnight,et al.  Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids , 2003 .

[165]  Linda See,et al.  Applying soft computing approaches to river level forecasting , 1999 .

[166]  J. Niu Precipitation in the Pearl River basin, South China: scaling, regional patterns, and influence of large-scale climate anomalies , 2013, Stochastic Environmental Research and Risk Assessment.

[167]  Magnus Persson,et al.  Is correlation dimension a reliable indicator of low‐dimensional chaos in short hydrological time series? , 2002 .

[168]  Peter C. Young,et al.  Hypothetico‐inductive data‐based mechanistic modeling of hydrological systems , 2013 .

[169]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[170]  Peter C. Young,et al.  Data-based mechanistic modelling of environmental, ecological, economic and engineering systems. , 1998 .

[171]  Mohammed Ali,et al.  Optimal Design of Water Distribution Systems Using Genetic Algorithms , 2000 .

[172]  Bettina Schaefli,et al.  What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology , 2007 .

[173]  Jan Adamowski,et al.  Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. , 2010 .

[174]  V. Jothiprakash,et al.  Reservoir Sedimentation Estimation Using Artificial Neural Network , 2009 .

[175]  Rui Zou,et al.  An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling , 2007 .

[176]  Demetris Koutsoyiannis A nonlinear disaggregation method with a reduced parameter set for simulation of hydrologic series , 1992 .

[177]  Douglas Maraun,et al.  Nonlinear Processes in Geophysics , 2000 .

[178]  Dragan Savic,et al.  A Genetic Programming Approach to Rainfall-Runoff Modelling , 1999 .

[179]  Hillel Rubin,et al.  Effect of Nonlinear Stabilizing Salinity Profiles on Thermal Convection in a Porous Medium Layer , 1973 .

[180]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[181]  David Labat WAVELET ANALYSES IN HYDROLOGY , 2010 .

[182]  Ashu Jain,et al.  Development of effective and efficient rainfall‐runoff models using integration of deterministic, real‐coded genetic algorithms and artificial neural network techniques , 2004 .

[183]  J. Amorocho,et al.  The nonlinear prediction problem in the study of the runoff cycle , 1967 .

[184]  Demetris Koutsoyiannis,et al.  Uncertainty, entropy, scaling and hydrological stochastics. 2. Time dependence of hydrological processes and time scaling / Incertitude, entropie, effet d'échelle et propriétés stochastiques hydrologiques. 2. Dépendance temporelle des processus hydrologiques et échelle temporelle , 2005 .

[185]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[186]  A. A. Harms,et al.  An extension to the Thomas‐Fiering Model for the sequential generation of streamflow , 1967 .

[187]  Wolfgang Rauch,et al.  Genetic algorithms in real time control applied to minimize transient pollution from urban wastewater systems , 1999 .

[188]  Peter C. Young,et al.  A data based mechanistic approach to nonlinear flood routing and adaptive flood level forecasting , 2008 .

[189]  T. Caughey Nonlinear Theory of Random Vibrations , 1971 .

[190]  Jeanne S. Yulianti,et al.  Waste-Load Allocation Using Genetic Algorithms , 2001 .

[191]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[192]  David R. Dawdy,et al.  Towards a Nonlinear Geophysical Theory of Floods in River Networks: An Overview of 20 Years of Progress , 2007 .

[193]  Peter C. Young,et al.  The modelling and control of water quality in a river system , 1974, Autom..

[194]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[195]  Bellie Sivakumar,et al.  Dominant processes concept in hydrology: moving forward , 2004 .

[196]  V. V. Srinivas,et al.  Downscaling of precipitation for climate change scenarios: A support vector machine approach , 2006 .

[197]  J. Eheart,et al.  Using Genetic Algorithms to Solve a Multiobjective Groundwater Monitoring Problem , 1995 .

[198]  P. Coulibaly,et al.  Downscaling Precipitation and Temperature with Temporal Neural Networks , 2005 .

[199]  Mustafa M. Aral,et al.  Identification of Contaminant Source Location and Release History in Aquifers , 2001 .

[200]  Asaad Y. Shamseldin,et al.  Investigation of Internal Functioning of the Radial-Basis-Function Neural Network River Flow Forecasting Models , 2009 .

[201]  Eric Gaume,et al.  Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology? , 2003 .

[202]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[203]  Juan B. Valdés,et al.  NONLINEAR MODEL FOR DROUGHT FORECASTING BASED ON A CONJUNCTION OF WAVELET TRANSFORMS AND NEURAL NETWORKS , 2003 .

[204]  R. Wardlaw,et al.  EVALUATION OF GENETIC ALGORITHMS FOR OPTIMAL RESERVOIR SYSTEM OPERATION , 1999 .

[205]  N. Erdem Unal,et al.  Wavelet analysis for modeling suspended sediment discharge , 2004 .

[206]  Zurek,et al.  Algorithmic randomness and physical entropy. , 1989, Physical review. A, General physics.

[207]  Shie-Yui Liong,et al.  Forecasting of hydrologic time series with ridge regression in feature space , 2007 .

[208]  Jihn-Sung Lai,et al.  Optimization of operation rule curves and flushing schedule in a reservoir , 2003 .

[209]  Demetris Koutsoyiannis,et al.  On the quest for chaotic attractors in hydrological processes , 2006 .

[210]  Gwo-Fong Lin,et al.  Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods , 2009 .

[211]  Dimitri P. Solomatine,et al.  Model Induction with Support Vector Machines: Introduction and Applications , 2001 .

[212]  Ozgur Kisi,et al.  Evapotranspiration modelling from climatic data using a neural computing technique , 2007 .

[213]  P. C. Young,et al.  Chapter 13 Simplicity out of complexity , 2002 .

[214]  Peter C Young,et al.  Advances in real–time flood forecasting , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[215]  M. Çimen,et al.  Estimation of daily suspended sediments using support vector machines , 2008 .

[216]  Madan M. Gupta,et al.  Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems , 2003 .

[217]  J. Adamowski River flow forecasting using wavelet and cross‐wavelet transform models , 2008 .

[218]  R. Valencia,et al.  Disaggregation processes in stochastic hydrology , 1973 .

[219]  Vijay P. Singh,et al.  VERSATILE USES OF THE ENTROPY CONCEPT IN WATER RESOURCES , 1992 .

[220]  Yoon-Seok Hong,et al.  Evolutionary self-organising modelling of a municipal wastewater treatment plant. , 2003, Water research.

[221]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[222]  Lars Gottschalk,et al.  Stability of River Flow Regimes , 1992 .

[223]  B. Kosko Fuzzy Thinking: The New Science of Fuzzy Logic , 1993 .

[224]  H. Maier,et al.  The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters , 1996 .

[225]  Robert J. Abrahart,et al.  Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model , 1999 .

[226]  Puteh Saad,et al.  River flow time series using least squares support vector machines , 2011 .

[227]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[228]  Gwo-Fong Lin,et al.  Development of a support‐vector‐machine‐based model for daily pan evaporation estimation , 2012 .

[229]  H. Rosenthal,et al.  On the epsilon entropy of mixed random variables , 1988, IEEE Trans. Inf. Theory.

[230]  V. Singh,et al.  At‐a‐station hydraulic geometry relations, 2: calibration and testing , 2008 .

[231]  T. Ozaki,et al.  Non-linear time series models for non-linear random vibrations , 1980, Journal of Applied Probability.

[232]  Ashu Jain,et al.  Temporal scaling in river flow: can it be chaotic? / L’invariance d’échelle de l’écoulement fluvial peut-elle être chaotique? , 2004 .

[233]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[234]  Ozgur Kisi,et al.  Evapotranspiration modelling using support vector machines / Modélisation de l'évapotranspiration à l'aide de ‘support vector machines’ , 2009 .

[235]  P. Young,et al.  Time variable and state dependent modelling of non-stationary and nonlinear time series , 1993 .

[236]  E. Foufoula‐Georgiou,et al.  Incorporating the spatio-temporal distribution of rainfall and basin geomorphology into nonlinear analyses of streamflow dynamics , 2005 .

[237]  C. Gaucherel Use of wavelet transform for temporal characterisation of remote watersheds , 2002 .

[238]  J. Amorocho Nonlinear Hydrologic Analysis , 1973 .

[239]  A. Robinson Fayek,et al.  Application of fuzzy logic to forecast seasonal runoff , 2003 .

[240]  D. McKinney,et al.  Genetic algorithm solution of groundwater management models , 1994 .

[241]  Konstantine P. Georgakakos,et al.  Evidence of Deterministic Chaos in the Pulse of Storm Rainfall. , 1990 .

[242]  B. Sivakumar Hydrologic modeling and forecasting: role of thresholds , 2005, Environ. Model. Softw..

[243]  Ni-Bin Chang,et al.  Soil moisture estimation in a semiarid watershed using RADARSAT‐1 satellite imagery and genetic programming , 2006 .

[244]  Luna Bergere Leopold,et al.  The concept of entropy in landscape evolution , 1962 .

[245]  R. Abrahart,et al.  Detection of conceptual model rainfall—runoff processes inside an artificial neural network , 2003 .

[246]  Nonlinear Stochastic Model of Rainfall Runoff Process , 1984 .

[247]  Response of springflow to some climatic variables in southwestern Wisconsin , 1966 .

[248]  Bellie Sivakumar,et al.  River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches , 2002 .

[249]  J. O. Sonuga Entropy principle applied to the rainfall-runoff process , 1976 .

[250]  Markus Disse,et al.  Fuzzy rule-based models for infiltration , 1993 .

[251]  Demetris Koutsoyiannis,et al.  Uncertainty, entropy, scaling and hydrological stochastics. 1. Marginal distributional properties of hydrological processes and state scaling / Incertitude, entropie, effet d'échelle et propriétés stochastiques hydrologiques. 1. Propriétés distributionnelles marginales des processus hydrologiques et , 2005 .

[252]  E. Foufoula‐Georgiou,et al.  Wavelet analysis for geophysical applications , 1997 .

[253]  V. Singh,et al.  Downstream hydraulic geometry relations: 2. Calibration and testing , 2003 .

[254]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[255]  Ronny Berndtsson,et al.  NONLINEAR DYNAMICS AND CHAOS IN HYDROLOGY , 2010 .

[256]  V. Klemeš,et al.  Physically Based Stochastic Hydrologic Analysis , 1978 .

[257]  Ö. Kisi Generalized regression neural networks for evapotranspiration modelling , 2006 .

[258]  N. Minshall Predicting Storm Runoff on Small Experimental Watersheds , 1960 .

[259]  B. Bobée,et al.  Artificial neural network modeling of water table depth fluctuations , 2001 .

[260]  Vijay P. Singh,et al.  Tsallis Entropy Theory for Derivation of Infiltration Equations , 2010 .

[261]  Lachun Wang,et al.  Chaotic dynamics of the flood series in the Huaihe River Basin for the last 500 years , 2002 .

[262]  Pao-Shan Yu,et al.  Statistical downscaling of daily precipitation using support vector machines and multivariate analysis , 2010 .

[263]  Xuesong Zhang,et al.  Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging , 2009 .

[264]  A. W. Minns,et al.  Artificial neural networks as rainfall-runoff models , 1996 .

[265]  Nelson Obregón,et al.  A Deterministic Geometric Representation of Temporal Rainfall: Results for a Storm in Boston , 1996 .

[266]  P. Young,et al.  Data assimilation and adaptive forecasting of water levels in the river Severn catchment, United Kingdom , 2006 .

[267]  S. E. Serrano,et al.  Analytical Solutions of the Nonlinear Groundwater Flow Equation in Unconfined Aquifers and the Effect of Heterogeneity , 1995 .

[268]  Qiang Wang,et al.  Biases of correlation dimension estimates of streamflow data in the Canadian prairies , 1998 .

[269]  P. Jowitt A maximum entropy view of probability-distributed catchment models , 1991 .

[270]  S. Liong,et al.  EC-SVM approach for real-time hydrologic forecasting , 2004 .

[271]  C. Beaumont Stochastic models in hydrology , 1979 .

[272]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[273]  Peter C. Young,et al.  Gauss, Kalman and advances in recursive parameter estimation , 2011 .

[274]  Rajib Maity,et al.  Potential of support vector regression for prediction of monthly streamflow using endogenous property , 2010 .

[275]  Jeffrey Horn,et al.  Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA) , 2002 .

[276]  Praveen Kumar,et al.  Wavelets in Geophysics , 1994 .

[277]  Boris Faybishenko,et al.  Chaotic dynamics in flow through unsaturated fractured media , 2002 .

[278]  Ka-Ming Lau,et al.  Climate Signal Detection Using Wavelet Transform: How to Make a Time Series Sing , 1995 .

[279]  Bellie Sivakumar,et al.  Chaos theory in hydrology: important issues and interpretations , 2000 .

[280]  P. Young,et al.  Identification of nonlinearity in rainfall‐flow response using data‐based mechanistic modeling , 2011 .

[281]  Mohammad Karamouz,et al.  Probabilistic reservoir operation using Bayesian stochastic model and support vector machine , 2009 .

[282]  David Labat,et al.  Recent advances in wavelet analyses: Part 1. A review of concepts , 2005 .

[283]  Kuolin Hsu,et al.  Self‐organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis , 2002 .

[284]  Irina Krasovskaia,et al.  Entropy-based grouping of river flow regimes , 1997 .

[285]  Bellie Sivakumar,et al.  Chaos theory in geophysics: past, present and future , 2004 .

[286]  J. N. Kapur Maximum-entropy models in science and engineering , 1992 .

[287]  J. O. Sonuga Principle of maximum entropy in hydrologic frequency analysis , 1972 .

[288]  T. Gan,et al.  Precipitation of southwestern Canada: Wavelet, scaling, multifractal analysis, and teleconnection to climate anomalies , 2007 .

[289]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[290]  Luis Samaniego,et al.  Fuzzy rule-based classification of remotely sensed imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[291]  Efi Foufoula-Georgiou,et al.  Energy decomposition of rainfall in the time-frequency-scale domain using wavelet packets , 1996 .

[292]  K. P. Sudheer,et al.  A neuro-fuzzy computing technique for modeling hydrological time series , 2004 .

[293]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[294]  Laurence C. Smith,et al.  Stream flow characterization and feature detection using a discrete wavelet transform , 1998 .

[295]  Dawei Han,et al.  Identification of Support Vector Machines for Runoff Modelling , 2004 .

[296]  Ronny Berndtsson,et al.  Evidence of chaos in the rainfall-runoff process , 2001 .

[297]  Peter C. Young,et al.  Top‐down and data‐based mechanistic modelling of rainfall–flow dynamics at the catchment scale , 2003 .

[298]  M. Franchini Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models , 1996 .

[299]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[300]  Vujica Yevjevich,et al.  Stochastic processes in hydrology , 1972 .

[301]  Praveen Kumar,et al.  Coherent modes in multiscale variability of streamflow over the United States , 2000 .

[302]  Li-Chiu Chang,et al.  Enforced self-organizing map neural networks for river flood forecasting , 2007 .

[303]  K. W. Chau,et al.  River stage prediction based on a distributed support vector regression , 2008 .

[304]  Stefano Alvisi,et al.  Water level forecasting through fuzzy logic and artificial neural network approaches , 2005 .

[305]  N. Null Artificial Neural Networks in Hydrology. I: Preliminary Concepts , 2000 .

[306]  Vijay P. Singh,et al.  Parameter estimations for 2-parameter Pareto distribution by pome , 1995 .

[307]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[308]  A. Jayawardena,et al.  Analysis and prediction of chaos in rainfall and stream flow time series , 1994 .

[309]  Li Chen,et al.  REAL CODED GENETIC ALGORITHM OPTIMIZATION OF LONG TERM RESERVOIR OPERATION 1 , 2003 .

[310]  Bellie Sivakumar,et al.  Hydrologic system complexity and nonlinear dynamic concepts for a catchment classification framework , 2011 .

[311]  Chao-Lin Chiu Entropy and Probability Concepts in Hydraulics , 1987 .

[312]  Dara Entekhabi,et al.  Nonlinear Dynamics of Soil Moisture at Climate Scales: 2. Chaotic Analysis , 1991 .

[313]  Tommaso Moramarco,et al.  Predicting hourly-based flow discharge hydrographs from level data using genetic algorithms , 2008 .

[314]  Vijay P. Singh,et al.  A univariate model for long-term streamflow forecasting: 1. Development , 1991 .

[315]  P. Coulibaly,et al.  Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting , 2012 .

[316]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[317]  Vijay P. Singh,et al.  Hydrologic Synthesis Using Entropy Theory: Review , 2011 .

[318]  V. Singh,et al.  THE USE OF ENTROPY IN HYDROLOGY AND WATER RESOURCES , 1997 .

[319]  J. Delleur,et al.  A stochastic cluster model of daily rainfall sequences , 1981 .

[320]  Gwo-Fong Lin,et al.  Effective forecasting of hourly typhoon rainfall using support vector machines , 2009 .

[321]  Demetris Koutsoyiannis,et al.  A dynamic model for short-scale rainfall disaggregation , 1990 .

[322]  null null,et al.  Artificial Neural Networks in Hydrology. II: Hydrologic Applications , 2000 .

[323]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[324]  K. P. Sudheer,et al.  Identification of physical processes inherent in artificial neural network rainfall runoff models , 2004 .

[325]  Dimitri P. Solomatine,et al.  Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation events , 2000 .

[326]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[327]  Ignacio Rodriguez-Iturbe,et al.  Phase-space analysis of daily streamflow : characterization and prediction , 1998 .

[328]  Josyane Ronchail,et al.  Recent advances in wavelet analyses: Part 2—Amazon, Parana, Orinoco and Congo discharges time scale variability , 2005 .

[329]  P. P. Mujumdar,et al.  A fuzzy risk approach for seasonal water quality management of a river system , 2002 .

[330]  Hung Man Tong,et al.  Threshold models in non-linear time series analysis. Lecture notes in statistics, No.21 , 1983 .

[331]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[332]  K. P. Sudheer,et al.  Explaining the internal behaviour of artificial neural network river flow models , 2004 .

[333]  Lutz Hamel,et al.  Knowledge Discovery with Support Vector Machines , 2009 .

[334]  Jose D. Salas,et al.  Aggregation and sampling in deterministic chaos: implications for chaos identification in hydrological processes , 2005 .

[335]  S. Cao,et al.  Entropy-based design approach of threshold alluvial channels , 1997 .

[336]  Lucien Duckstein,et al.  Fuzzy rule-based classification of atmospheric circulation patterns , 1995 .

[337]  R. Abrahart,et al.  Flood estimation at ungauged sites using artificial neural networks , 2006 .

[338]  A. Mulligan,et al.  Genetic Algorithms for Calibrating Water Quality Models , 1998 .