Survey of the H-mode power threshold and transition physics studies in ASDEX Upgrade

An overview of the H-mode threshold power in ASDEX Upgrade which addresses the impact of the tungsten versus graphite wall, the dependences upon plasma current and density, as well as the influence of the plasma ion mass is given. Results on the H–L back transition are also presented. Dedicated L–H transition studies with electron heating at low density, which enable a complete separation of the electron and ion channels, reveal that the ion heat flux is a key parameter in the L–H transition physics mechanism through the main ion pressure gradient which is itself the main contribution to the radial electric field and the induced flow shearing at the edge. The electron channel does not play any role. The 3D magnetic field perturbations used to mitigate the edge-localized modes are found to also influence the L–H transition and to increase the power threshold. This effect is caused by a flattening of the edge pressure gradient in the presence of the 3D fields such that the L–H transitions with and without perturbations occur at the same value of the radial electric field well, but at different heating powers.

[1]  J. Rice,et al.  Edge radial electric field structure and its connections to H-mode confinement in Alcator C-Mod plasmas , 2009 .

[2]  F. Ryter,et al.  Progress of the international H-mode power threshold database activity , 2002 .

[3]  R. Neu,et al.  Operational conditions in a W-clad tokamak , 2007 .

[4]  Julien Fuchs,et al.  High-accuracy characterization of the edge radial electric field at ASDEX Upgrade , 2013 .

[5]  E. Doyle,et al.  Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement. , 2012, Physical review letters.

[6]  R. Bell,et al.  Overview of L–H power threshold studies in NSTX , 2010 .

[7]  H. Zohm,et al.  The radial electric field and its associated shear in the ASDEX Upgrade tokamak , 2006 .

[8]  R. Churchill,et al.  Scaling of H-mode threshold power and L–H edge conditions with favourable ion grad-B drift in Alcator C-Mod tokamak , 2012 .

[9]  E. Doyle,et al.  Slow L-H transitions in DIII-D plasmas. , 2002, Physical review letters.

[10]  W. Dorland,et al.  Plasma Physics and Controlled Fusion , 1984 .

[11]  J. Stober,et al.  Survey of H-mode transition and confinement from ASDEX Upgrade 'H-mode standard shot' , 2002 .

[12]  R. Neu,et al.  H-mode results in ASDEX Upgrade , 1994 .

[13]  Paul W. Terry,et al.  Influence of sheared poloidal rotation on edge turbulence , 1990 .

[14]  H. Greuner,et al.  Final Steps to an All Tungsten Divertor Tokamak , 2007 .

[15]  Yueqiang Liu,et al.  Magnetic perturbation experiments on MAST L- and H-mode plasmas using internal coils , 2011 .

[16]  W. Suttrop,et al.  Estimation of edge electron temperature profiles via forward modelling of the electron cyclotron radiation transport at ASDEX Upgrade , 2013 .

[17]  H. Zohm,et al.  Differences in the H-mode pedestal width of temperature and density , 2012 .

[18]  K. Burrell,et al.  Parametric dependence of the edge radial electric field in the DIII-D tokamak , 1998 .

[19]  F. Ryter,et al.  Electron density evolution after L–H transitions and the L–H/H–L cycle in ASDEX Upgrade , 2012 .

[20]  P. Diamond,et al.  Zonal flows and transient dynamics of the L-H transition. , 2003, Physical review letters.

[21]  R. H. Bulmer,et al.  Sustained Spheromak Physics Experiment (SSPX): design and physics results , 2012 .

[22]  P. Diamond,et al.  Spatiotemporal structure of the interaction between turbulence and flows at the L-H transition in a toroidal plasma. , 2011, Physical review letters.

[23]  C. Fuchs,et al.  Integrated Data Analysis of Profile Diagnostics at ASDEX Upgrade , 2010 .

[24]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[25]  P. Gohil,et al.  Dependence of the H-mode power threshold on toroidal plasma rotation in the DIII-D tokamak , 2008 .

[26]  H. R. Wilson,et al.  REVIEW ARTICLE: A review of theories of the L-H transition , 2000 .

[27]  Y. Martin,et al.  Assessment of the H-mode Power Threshold Requirements for ITER , 2013 .

[28]  L–H transition in the presence of magnetic perturbations in ASDEX Upgrade , 2012 .

[29]  F. G. Rimini,et al.  Isotope scaling of the H mode power threshold on JET , 1999 .

[30]  R. Neu,et al.  H-mode threshold and confinement in helium and deuterium in ASDEX Upgrade , 2009 .

[31]  J. Contributors,et al.  JET divertor geometry and plasma shape effects on the L H transition threshold , 2004 .

[32]  R. Dux,et al.  High-resolution charge exchange measurements at ASDEX Upgrade. , 2012, The Review of scientific instruments.

[33]  J. Ferreira,et al.  Effect of resonant magnetic perturbations on COMPASS-C tokamak discharges , 1992 .

[34]  D. McDonald,et al.  A new model of the L–H transition in tokamaks , 2012 .

[35]  J. Contributors,et al.  The H-mode threshold in JET with the ITER-like wall , 2012 .

[36]  T. Lunt,et al.  Overview on plasma operation with a full tungsten wall in ASDEX Upgrade , 2013 .

[37]  Tomonori Takizuka,et al.  Power requirement for accessing the H-mode in ITER , 2008 .

[38]  F. Ryter,et al.  Mean and oscillating plasma flows and turbulence interactions across the L-H confinement transition. , 2011, Physical review letters.

[39]  Jet Efda Contributors,et al.  H-mode access in the low density regime on JET , 2006 .

[40]  T. L. Rhodes,et al.  Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas , 2005 .

[41]  G Sips,et al.  Design of a digital multiradian phase detector and its application in fusion plasma interferometry. , 2010, The Review of scientific instruments.

[42]  Norio Suzuki,et al.  H-Mode Power Threshold Database for ITER , 1996 .

[43]  S. Saarelma,et al.  L–H transition and pedestal studies on MAST , 2011 .

[44]  F. Ryter,et al.  L- to H-mode transitions at low density in ASDEX Upgrade , 2011 .

[45]  N Hawkes,et al.  Active control of type-I edge-localized modes with n=1 perturbation fields in the JET tokamak. , 2007, Physical review letters.

[46]  F. Wagner,et al.  A quarter-century of H-mode studies , 2007 .

[47]  R. Bell,et al.  L–H threshold studies in NSTX , 2010 .

[48]  U. Stroth,et al.  On the interaction of turbulence and flows in toroidal plasmas , 2011 .

[49]  Burrell,et al.  Role of edge electric field and poloidal rotation in the L-H transition. , 1990, Physical review letters.

[50]  A. Sips,et al.  Compatibility of ITER scenarios with an all-W wall , 2008 .

[51]  P T Lang,et al.  First observation of edge localized modes mitigation with resonant and nonresonant magnetic perturbations in ASDEX Upgrade. , 2011, Physical review letters.

[52]  T. Tala,et al.  Core momentum and particle transport studies in the ASDEX Upgrade tokamak , 2011 .

[53]  M. Shats,et al.  Formation and structure of transport barriers during confinement transitions in toroidal plasma. , 2004, Physical review letters.

[54]  P. Stott,et al.  Plasma Physics and Controlled Fusion Conference: Focussing on Tokamak Research , 1995 .

[55]  R A Moyer,et al.  Increased nonlinear coupling between turbulence and low-frequency fluctuations at the L-H transition. , 2001, Physical review letters.

[56]  B. LaBombard,et al.  H-mode power threshold reduction in a slot-divertor configuration on the Alcator C-Mod tokamak , 2012 .

[57]  T. Osborne,et al.  L–H transition studies on DIII-D to determine H-mode access for operational scenarios in ITER , 2010 .

[58]  Jet Efda Contributors,et al.  Preparing the scientific basis for an all metal ITER , 2011 .

[59]  F. Ryter,et al.  Recent progress in understanding the L–H transition physics from ASDEX Upgrade , 2012 .