Ultrawideband propagation channels-theory, measurement, and modeling

This paper presents an overview of ultrawideband (UWB) propagation channels. It first demonstrates how the frequency selectivity of propagation processes causes fundamental differences between UWB channels and "conventional" (narrowband) channels. The concept of pathloss has to be modified, and the well-known WSSUS model is not applicable anymore. The paper also describes deterministic and stochastic models for UWB channels, identifies the key parameters for the description of delay dispersion, attenuation, and directional characterization, and surveys the typical parameter values that have been measured. Measurement techniques and methods for extracting model parameters are also different in UWB channels; for example, the concepts of narrowband channel parameter estimation (e.g., maximum-likelihood estimation) have to be modified. Finally, channel models also have an important impact on the performance evaluation of various UWB systems.

[1]  P. Bello Characterization of Randomly Time-Variant Linear Channels , 1963 .

[2]  Robert A. Scholtz,et al.  Multiple access with time-hopping impulse modulation , 1993, Proceedings of MILCOM '93 - IEEE Military Communications Conference.

[3]  R. W. Lorenz,et al.  Impact of the radio channel on the performance of digital mobile communication systems , 1995, Proceedings of 6th International Symposium on Personal, Indoor and Mobile Radio Communications.

[4]  James D. Taylor,et al.  Introduction to Ultra-Wideband Radar Systems , 1995 .

[5]  Gordon L. Stüber Principles of mobile communication , 1996 .

[6]  I-Tai Lu,et al.  Wideband wireless multipath channel modeling with path frequency dependence , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[7]  Gordon L. Stuber,et al.  Principles of Mobile Communication , 1996 .

[8]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[9]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[10]  Moe Z. Win,et al.  On the energy capture of ultrawide bandwidth signals in dense multipath environments , 1998, IEEE Communications Letters.

[11]  Moe Z. Win,et al.  Impulse radio: how it works , 1998, IEEE Communications Letters.

[12]  Larry J. Greenstein,et al.  An empirically based path loss model for wireless channels in suburban environments , 1999, IEEE J. Sel. Areas Commun..

[13]  Klaus I. Pedersen,et al.  Channel parameter estimation in mobile radio environments using the SAGE algorithm , 1999, IEEE J. Sel. Areas Commun..

[14]  I-Tai Lu,et al.  Multipath resolving with frequency dependence for wide-band wireless channel modeling , 1999 .

[15]  J.-P. Rossi,et al.  Influence of measurement conditions on the evaluation of some radio channel parameters , 1999 .

[16]  Bernard H. Fleury,et al.  First- and second-order characterization of direction dispersion and space selectivity in the radio channel , 2000, IEEE Trans. Inf. Theory.

[17]  Moe Z. Win,et al.  Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications , 2000, IEEE Trans. Commun..

[18]  Fernando Ramírez-Mireles,et al.  Performance of ultrawideband SSMA using time hopping and M-ary PPM , 2001, IEEE J. Sel. Areas Commun..

[19]  Andreas F. Molisch,et al.  The double-directional radio channel , 2001 .

[20]  Moe Z. Win,et al.  A statistical model for the UWB indoor channel , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[21]  Ralf Kattenbach,et al.  Statistical modeling of small-scale fading in directional radio channels , 2002, IEEE J. Sel. Areas Commun..

[22]  B. Uguen,et al.  A deterministic ultra wideband channel modeling , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[23]  Moe Z. Win,et al.  The ultra-wide bandwidth indoor channel: from statistical model to simulations , 2002, IEEE J. Sel. Areas Commun..

[24]  Moe Z. Win,et al.  Performance of selective Rake reception in a realistic UWB channel , 2002 .

[25]  Moe Z. Win,et al.  Performance of low-complexity RAKE reception in a realistic UWB channel , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[26]  Moe Z. Win,et al.  Evaluation of an ultra-wide-band propagation channel , 2002 .

[27]  Honggang Zhang,et al.  A statistical model for the small-scale multipath fading characteristics of ultra wideband indoor channel , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[28]  Chia-Chin Chong,et al.  Joint detection-estimation of directional channel parameters using the 2-D frequency domain SAGE algorithm with serial interference cancellation , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[29]  Robert C. Qiu,et al.  A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design , 2002, IEEE J. Sel. Areas Commun..

[30]  Ivan Seskar,et al.  A new modeling approach for wireless channels with predictable path geometries , 2002, Proceedings IEEE 56th Vehicular Technology Conference.

[31]  V. Hovinen,et al.  Ultra wideband indoor radio channel models: preliminary results , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[32]  J. Kunisch,et al.  Measurement results and modeling aspects for the UWB radio channel , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[33]  Thad B. Welch,et al.  The effects of the human body on UWB signal propagation in an indoor environment , 2002, IEEE J. Sel. Areas Commun..

[34]  Wayne E. Stark,et al.  Performance of ultra-wideband communications with suboptimal receivers in multipath channels , 2002, IEEE J. Sel. Areas Commun..

[35]  V. Tarokh,et al.  A statistical path loss model for in-home UWB channels , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[36]  Dajana Cassioli,et al.  UWB Channel Model Report , 2003 .

[37]  Walter Hirt,et al.  Composite Reconfigurable Wireless Networks: the Eu R&d Path towards 4g , 2022 .

[38]  Lajos Hanzo,et al.  OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting , 2003 .

[39]  Anuj Batra,et al.  Multi-band OFDM Physical Layer Proposal , 2003 .

[40]  J.L. Garcia,et al.  New channel impulse response model for UWB indoor system simulations , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[41]  Larry J. Greenstein,et al.  An empirical indoor path loss model for ultra-wideband channels , 2003, Journal of Communications and Networks.

[42]  K. Siwiak,et al.  Relation between multipath and wave propagation attenuation , 2003 .

[43]  A. H. Tewfik,et al.  Pulsed and non-pulsed OFDM ultra wideband wireless personal area networks , 2003, IEEE Conference on Ultra Wideband Systems and Technologies, 2003.

[44]  Ada S. Y. Poon,et al.  Indoor multiple-antenna channel characterization from 2 to 8 GHz , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[45]  Andreas F. Molisch,et al.  Channel models for ultrawideband personal area networks , 2003, IEEE Wireless Communications.

[46]  Larry J. Greenstein,et al.  UWB indoor delay profile model for residential and commercial environments , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[47]  G. Troster,et al.  UWB for noninvasive wireless body area networks: channel measurements and results , 2003, IEEE Conference on Ultra Wideband Systems and Technologies, 2003.

[48]  Rodney G. Vaughan,et al.  Channels, Propagation and Antennas for Mobile Communications , 2003 .

[49]  A. Muqaibel,et al.  Ultra wideband material characterization for indoor propagation , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[50]  Guy A. Schiavone,et al.  Analysis of ultra‐wide band signal propagation in an indoor environment , 2003 .

[51]  Jun-ichi Takada,et al.  An application of SAGE algorithm for UWB propagation channel estimation , 2003, IEEE Conference on Ultra Wideband Systems and Technologies, 2003.

[52]  Georgios B. Giannakis,et al.  Ultra-wideband communications: an idea whose time has come , 2004, IEEE Signal Processing Magazine.

[53]  Kim Chee Wee,et al.  Title UWB Channel Characterization in Outdoor Environments , 2004 .

[54]  Y. Watanabe,et al.  Development and experimental evaluations of "RS-2000" - a propagation simulator for UWB systems , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[55]  Fredrik Tufvesson,et al.  On the performance of transmitted-reference impulse radio , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[56]  K. Heidary Ultra-wideband (UWB) incidence on multiple dielectric interfaces , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[57]  Pascal Pagani,et al.  Experimental assessment of the UWB channel variability in a dynamic indoor environment , 2004, 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No.04TH8754).

[58]  K. Haneda,et al.  Experimental evaluation of a SAGE algorithm for ultra wideband channel sounding in an anechoic chamber , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[59]  A.M. Attiya,et al.  Frequency-domain measurement of indoor UWB propagation , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[60]  Chi Hou Chan,et al.  On the analysis of statistical distributions of UWB signal scattering by random rough surfaces based on Monte Carlo simulations of Maxwell equations , 2004, IEEE Transactions on Antennas and Propagation.

[61]  A. Molisch,et al.  IEEE 802.15.4a channel model-final report , 2004 .

[62]  Dajana Cassioli,et al.  Spectral analysis of UWB multiple access schemes using random scrambling , 2004, IEEE Transactions on Wireless Communications.

[63]  R.C. Qiu,et al.  A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design-Part II: physics-based system analysis , 2004, IEEE Transactions on Wireless Communications.

[64]  Robert C. Qiu A generalized time domain multipath channel and its application in ultra-wide-band (UWB) wireless optimal receiver design: system performance analysis , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[65]  R.J. Fontana,et al.  Recent system applications of short-pulse ultra-wideband (UWB) technology , 2004, IEEE Transactions on Microwave Theory and Techniques.

[66]  R. Yao,et al.  An efficient multipath channel model for UWB home networking , 2004, Proceedings. 2004 IEEE Radio and Wireless Conference (IEEE Cat. No.04TH8746).

[67]  A. Safaai-Jazi,et al.  Simulation of ultra‐wideband indoor propagation , 2004 .

[68]  Andreas F. Molisch,et al.  Symbol spreading for ultrawideband systems based on multiband OFDM , 2004, 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No.04TH8754).

[69]  P. Eggers,et al.  Ultra wideband radio propagation in body area network scenarios , 2004, Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738).

[70]  Dajana Cassioli,et al.  UWB propagation measurements by PN-sequence channel sounding , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[71]  A. Molisch,et al.  Statistical analysis of the UWB channel in an industrial environment , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[72]  Ryuji Kohno,et al.  Ultra Wideband Signals and Systems in Communication Engineering: Ghavami/Ultra Wideband Signals and Systems in Communication Engineering , 2004 .

[73]  R.M. Buehrer,et al.  A new 2-cluster model for indoor UWB channel measurements , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[74]  Dajana Cassioli,et al.  The role of path loss on the selection of the operating bands of UWB systems , 2004, 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No.04TH8754).

[75]  D. Cassioli,et al.  A time-domain propagation model of the UWB indoor channel in the FCC-compliant band 3.6 - 6 GHz based on PN-sequence channel measurements , 2004, 2004 IEEE 59th Vehicular Technology Conference. VTC 2004-Spring (IEEE Cat. No.04CH37514).

[76]  Fredrik Tufvesson,et al.  Multipath propagation models for broadband wireless systems , 2004 .

[77]  Rittwik Jana,et al.  Measurement and modeling of an ultra-wide bandwidth indoor channel , 2004, IEEE Transactions on Communications.

[78]  Sangsung Choi,et al.  Through-material propagation characteristic and time resolution of UWB signal , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[79]  G.B. Giannakis,et al.  Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks , 2005, IEEE Signal Processing Magazine.

[80]  Larry J. Greenstein,et al.  UWB delay profile models for residential and commercial indoor environments , 2005, IEEE Transactions on Vehicular Technology.

[81]  C. Chong,et al.  A modified S-V clustering channel model for the UWB indoor residential environment , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[82]  Andreas F. Molisch,et al.  Localization via Ultra- Wideband Radios , 2005 .

[83]  Huaping Liu,et al.  Ultra-wideband for multiple access communications , 2005, IEEE Communications Magazine.

[84]  Chia-Chin Chong,et al.  A comprehensive model for ultrawideband propagation channels , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[85]  Patrick Ruther,et al.  An interconnected 2D-TM EBG structure for millimeter and submillimeter waves , 2005, IEEE Journal on Selected Areas in Communications.

[86]  Robert C. Qiu Generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver - part III: system performance analysis , 2006, IEEE Transactions on Wireless Communications.

[87]  Vincent K. N. Lau,et al.  The Mobile Radio Propagation Channel , 2007 .

[88]  Vivien Chu,et al.  Ultra Wideband Signals and Systems in Communication Engineering , 2007 .

[89]  Helmut Bölcskei,et al.  Ultrawideband Channel Modeling on the Basis of Information-Theoretic Criteria , 2005, IEEE Transactions on Wireless Communications.

[90]  Desmond P. Taylor,et al.  A Statistical Model for Indoor Multipath Propagation , 2007 .

[91]  Moe Z. Win,et al.  Low Complexity Rake Receivers in Ultra-Wideband Channels , 2007, IEEE Transactions on Wireless Communications.