Temperature Effect on Ionic Current and ssDNA Transport through Nanopores.

[1]  M. Muthukumar,et al.  Reading nanopore clocks in single-molecule electrophoresis experiments. , 2015, Biophysical journal.

[2]  J. Betton,et al.  Evidence of unfolded protein translocation through a protein nanopore. , 2014, ACS nano.

[3]  M. Muthukumar,et al.  Communication: Charge, diffusion, and mobility of proteins through nanopores. , 2014, The Journal of chemical physics.

[4]  Henning Stahlberg,et al.  Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. , 2013, Nature chemical biology.

[5]  Andre Marziali,et al.  Disentangling steric and electrostatic factors in nanoscale transport through confined space. , 2013, Nano letters (Print).

[6]  A. Meller,et al.  pH tuning of DNA translocation time through organically functionalized nanopores. , 2013, ACS nano.

[7]  S. Nussberger,et al.  Polypeptide Translocation Through the Mitochondrial TOM Channel: Temperature-Dependent Rates at the Single-Molecule Level. , 2013, The journal of physical chemistry letters.

[8]  M. Martinho,et al.  Thermal unfolding of proteins probed at the single molecule level using nanopores. , 2012, Analytical chemistry.

[9]  L. Auvray,et al.  Transport of long neutral polymers in the semidilute regime through a protein nanopore. , 2012, Physical review letters.

[10]  Aleksei Aksimentiev,et al.  Slowing down DNA translocation through a nanopore in lithium chloride. , 2012, Nano letters.

[11]  B. Krasniqi,et al.  Effect of charge, topology and orientation of the electric field on the interaction of peptides with the α‐hemolysin pore , 2011, Journal of peptide science : an official publication of the European Peptide Society.

[12]  U. Bockelmann,et al.  Rectification of the Current in α-Hemolysin Pore Depends on the Cation Type: The Alkali Series Probed by Molecular Dynamics Simulations and Experiments , 2011 .

[13]  F. G. van der Goot,et al.  Dynamics of unfolded protein transport through an aerolysin pore. , 2011, Journal of the American Chemical Society.

[14]  H. Bayley,et al.  Controlled translocation of individual DNA molecules through protein nanopores with engineered molecular brakes. , 2011, Nano letters.

[15]  U. Rant,et al.  Data analysis of translocation events in nanopore experiments. , 2009, Analytical chemistry.

[16]  J. Betton,et al.  Polyelectrolyte and unfolded protein pore entrance depends on the pore geometry. , 2009, Biochimica et biophysica acta.

[17]  H. Bayley,et al.  Enhanced translocation of single DNA molecules through α-hemolysin nanopores by manipulation of internal charge , 2008, Proceedings of the National Academy of Sciences.

[18]  Nahid N. Jetha,et al.  Nonexponential kinetics of DNA escape from alpha-hemolysin nanopores. , 2008, Biophysical journal.

[19]  T. Ala‐Nissila,et al.  Translocation dynamics with attractive nanopore-polymer interactions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  L. Auvray,et al.  Effect of screening on the transport of polyelectrolytes through nanopores , 2008 .

[21]  L. Auvray,et al.  Dynamics of polyelectrolyte transport through a protein channel as a function of applied voltage. , 2008, Physical review letters.

[22]  T. Ala‐Nissila,et al.  Influence of polymer-pore interactions on translocation. , 2007, Physical review letters.

[23]  J. Betton,et al.  Unfolding of proteins and long transient conformations detected by single nanopore recording. , 2007, Physical review letters.

[24]  A. Meller,et al.  Self-energy-limited ion transport in subnanometer channels. , 2006, Physical review letters.

[25]  Cecilia Clementi,et al.  Dynamics of polymer translocation through nanopores: theory meets experiment. , 2006, Physical review letters.

[26]  Holger Scheib,et al.  A rivet model for channel formation by aerolysin‐like pore‐forming toxins , 2006, The EMBO journal.

[27]  K. Schulten,et al.  Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel , 2005 .

[28]  K. Schulten,et al.  Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. , 2005, Biophysical journal.

[29]  Li-Qun Gu,et al.  Single protein pores containing molecular adapters at high temperatures. , 2005, Angewandte Chemie.

[30]  W. Im,et al.  Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. , 2004, Biophysical journal.

[31]  M. Misakian,et al.  Electrostatic Influence on Ion Transport through the αHL Channel , 2003, The Journal of Membrane Biology.

[32]  M. Muthukumar Polymer escape through a nanopore , 2003 .

[33]  M. Glaser,et al.  Coarse-grained simulation of polymer translocation through an artificial nanopore , 2003, cond-mat/0301406.

[34]  D. Baur,et al.  Rectification and voltage gating of ion currents in a nanofabricated pore , 2002 .

[35]  Amit Meller,et al.  Single molecule measurements of DNA transport through a nanopore , 2002, Electrophoresis.

[36]  M. Muthukumar Theory of sequence effects on DNA translocation through proteins and nanopores , 2002, Electrophoresis.

[37]  D. Branton,et al.  Voltage-driven DNA translocations through a nanopore. , 2001, Physical review letters.

[38]  M Misakian,et al.  Driven DNA transport into an asymmetric nanometer-scale pore. , 2000, Physical review letters.

[39]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  D. Branton,et al.  Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. , 1999, Biophysical journal.

[41]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[42]  Y. C. Wu,et al.  A dc method for the absolute determination of conductivities of the primary standard KCl solutions from 0-degrees-C to 50-degrees-C , 1994 .

[43]  D. Tsernoglou,et al.  Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states , 1994, Nature.

[44]  J. Giérak,et al.  DNA unzipping and protein unfolding using nanopores. , 2012, Methods in molecular biology.

[45]  Y. C. Wu,et al.  A dc Method for the Absolute Determination of Conductivities of the Primary Standard KCl Solutions from 0 °C to 50 °C , 1994, Journal of research of the National Institute of Standards and Technology.