A radiative transfer framework for non-exponential media

We develop a new theory of volumetric light transport for media with non-exponential free-flight distributions. Recent insights from atmospheric sciences and neutron transport demonstrate that such distributions arise in the presence of correlated scatterers, which are naturally produced by processes such as cloud condensation and fractal-pattern formation. Our theory formulates a non-exponential path integral as the result of averaging stochastic classical media, and we introduce practical models to solve the resulting averaging problem efficiently. Our theory results in a generalized path integral which allows us to handle non-exponential media using the full range of Monte Carlo rendering algorithms while enriching the range of achievable appearance. We propose parametric models for controlling the statistical correlations by leveraging work on stochastic processes, and we develop a method to combine such unresolved correlations (and the resulting non-exponential free-flight behavior) with explicitly modeled macroscopic heterogeneity. This provides a powerful authoring approach where artists can freely design the shape of the attenuation profile separately from the macroscopic heterogeneous density, while our theory provides a physically consistent interpretation in terms of a path space integral. We address important considerations for graphics including reciprocity and bidirectional rendering algorithms, all in the presence of surfaces and correlated media.

[1]  Y. Rahmani Micromechanics and rheology of hard and soft-sphere colloidal glasses , 2013 .

[2]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[3]  Shuang Zhao,et al.  High-order similarity relations in radiative transfer , 2014, ACM Trans. Graph..

[4]  Edward W. Larsen,et al.  Non-classical particle transport with angular-dependent path-length distributions. II: Application to pebble bed reactor cores , 2013, 1310.1848.

[5]  Derek Nowrouzezahrai,et al.  A Non-Parametric Factor Microfacet Model for Isotropic BRDFs , 2016, ACM Trans. Graph..

[6]  A. Marshak,et al.  Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions , 2004 .

[7]  Anthony B. Davis,et al.  A Generalized Linear Transport Model for Spatially Correlated Stochastic Media , 2014, 1410.8200.

[8]  A. Borovoi On the extinction of radiation by a homogeneous but spatially correlated random medium: comment. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  Edward W. Larsen,et al.  Nonclassical particle transport in heterogeneous materials , 2017 .

[10]  Carsten Dachsbacher,et al.  The SGGX microflake distribution , 2015, ACM Trans. Graph..

[11]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[12]  Derek Nowrouzezahrai,et al.  A programmable system for artistic volumetric lighting , 2011, ACM Trans. Graph..

[13]  Christian Holm,et al.  Electrostatic effects in soft matter and biophysics , 2001 .

[14]  D. Chan,et al.  The electrostatic interaction in colloidal systems with low added electrolyte , 1985 .

[15]  Christopher D. Kulla,et al.  Production volume rendering: SIGGRAPH 2017 course , 2017, SIGGRAPH Courses.

[16]  David S. Ebert,et al.  Texturing and Modeling, Third Edition: A Procedural Approach (The Morgan Kaufmann Series in Computer Graphics) , 2011 .

[17]  K. V. D. Vaart,et al.  Dynamic heterogeneity in hard and soft sphere colloidal glasses , 2012 .

[18]  Edward W. Larsen,et al.  A generalized linear Boltzmann equation for non-classical particle transport , 2011 .

[19]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[21]  Anthony B. Davis,et al.  Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales , 1999 .

[22]  Per H. Christensen,et al.  The Path to Path-Traced Movies , 2016, Found. Trends Comput. Graph. Vis..

[23]  Jonathan Dupuy,et al.  Additional Progress Towards the Unification of Microfacet and Microflake Theories , 2016, EGSR.

[24]  Eugene d'Eon Rigorous asymptotic and moment-preserving diffusion approximations for generalized linear Boltzmann transport in d dimensions , 2013, ArXiv.

[25]  Johannes Hanika,et al.  Monte Carlo Methods for Volumetric Light Transport Simulation , 2018, Comput. Graph. Forum.

[26]  Edward W. Larsen,et al.  Non-classical particle transport with angular-dependent path-length distributions. I: Theory , 2014 .

[27]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[28]  Christopher D. Kulla,et al.  Oz: the great and volumetric , 2013, SIGGRAPH '13.

[29]  Robert L Cook,et al.  A reflectance model for computer graphics , 1981, SIGGRAPH '81.

[30]  Jonathan T. Moon,et al.  A radiative transfer framework for rendering materials with anisotropic structure , 2010, ACM Trans. Graph..

[31]  A. Nikolov,et al.  Fat Particle Structure and Stability of Food Emulsions , 2008 .

[32]  Li Fei-Fei,et al.  Crowdsourcing in Computer Vision , 2016, Found. Trends Comput. Graph. Vis..

[33]  Peter Shirley,et al.  An Anisotropic Phong BRDF Model , 2000, J. Graphics, GPU, & Game Tools.

[34]  David J. Kriegman,et al.  Toward a perceptual space for gloss , 2009, TOGS.

[35]  A. Fulínski,et al.  Fractional Brownian Motions , 2020, Acta Physica Polonica B.

[36]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[37]  Eugene d'Eon,et al.  A Reciprocal Formulation of Nonexponential Radiative Transfer. 1: Sketch and Motivation , 2018, ArXiv.

[38]  W. A. Coleman Mathematical Verification of a Certain Monte Carlo Sampling Technique and Applications of the Technique to Radiation Transport Problems , 1968 .

[39]  Eugene d'Eon,et al.  Rigorous Asymptotic and Moment-Preserving Diffusion Approximations for Generalized Linear Boltzmann Transport in Arbitrary Dimension , 2013, 1312.1412.

[40]  A. R. Jameson,et al.  On the Spatial Distribution of Cloud Particles , 2000 .

[41]  A. G. Goicochea A Model for the Stability of a TiO2 Dispersion , 2013 .

[42]  Francisco J. Serón,et al.  Visualizing Underwater Ocean Optics , 2008, Comput. Graph. Forum.

[43]  Eugene d'Eon A reciprocal formulation of non-exponential radiative transfer with uncorrelated sources, detectors and boundaries. 1: Sketch and motivation , 2018 .

[44]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[45]  D. Grier,et al.  Interactions in Colloidal Suspensions , 2001 .

[46]  Christophe Hery,et al.  Path Traced Subsurface Scattering using Anisotropic Phase Functions and Non-Exponential Free Flights , 2017 .

[47]  Peter Shirley,et al.  A microfacet-based BRDF generator , 2000, SIGGRAPH.

[48]  Raymond A. Shaw,et al.  Super-exponential extinction of radiation in a negatively-correlated random medium , 2002 .

[49]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[50]  David S. Ebert,et al.  Texturing and Modeling: A Procedural Approach , 1994 .

[51]  Anthony B. Davis,et al.  Radiation propagation in random media: From positive to negative correlations in high-frequency fluctuations , 2011 .

[52]  Ken Perlin,et al.  [Computer Graphics]: Three-Dimensional Graphics and Realism , 2022 .

[53]  Steve Marschner,et al.  Multi-scale modeling and rendering of granular materials , 2015, ACM Trans. Graph..

[54]  Derek Nowrouzezahrai,et al.  A programmable system for artistic volumetric lighting , 2011, ACM Trans. Graph..

[55]  Edward H. Adelson,et al.  Understanding the role of phase function in translucent appearance , 2013, TOGS.

[56]  Steve Marschner,et al.  Eurographics Symposium on Rendering (2007) Jan Kautz and Sumanta Pattanaik (Editors) Abstract Rendering Discrete Random Media Using Precomputed Scattering Solutions , 2022 .

[57]  Adrián Jarabo,et al.  Bidirectional Rendering of Vector Light Transport , 2018, Comput. Graph. Forum.

[58]  Nelson L. Max,et al.  Interactive multiple anisotropic scattering in clouds , 2008, I3D '08.

[59]  Thomas Müller,et al.  Efficient rendering of heterogeneous polydisperse granular media , 2016, ACM Trans. Graph..

[60]  Diego Gutierrez,et al.  A radiative transfer framework for spatially-correlated materials , 2018, ACM Trans. Graph..

[61]  Luca Fascione,et al.  The path tracing revolution in the movie industry , 2015, SIGGRAPH Courses.

[62]  A B Kostinski,et al.  On the extinction of radiation by a homogeneous but spatially correlated random medium. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  Steve Marschner,et al.  Efficient multiple scattering in hair using spherical harmonics , 2008, ACM Trans. Graph..

[64]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[65]  T. Smith,et al.  The C.I.E. colorimetric standards and their use , 1931 .

[66]  Alexander Keller,et al.  Unbiased Global Illumination with Participating Media , 2008 .