A Bi–Hyperbolic Finite Volume Method on Quadrilateral Meshes

A non-oscillatory, high resolution reconstruction method on quadrilateral meshes in two dimensions (2D) is presented. It is a two-dimensional extension of Marquina’s hyperbolic method. The generalization to quadrilateral meshes allows the method to simulate realistic flow problems in complex domains. An essential point in the construction of the method is a second order accurate approximation of gradients on an irregular, quadrilateral mesh. The resulting scheme is optimal in the sense that it is third order accurate and the reconstruction requires only nearest neighbour information. Numerical experiments are presented and the computational results are compared to experimental data.

[1]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[2]  Antonio Marquina,et al.  Capturing Shock Reflections , 1996 .

[3]  Antonio Marquina,et al.  Local Piecewise Hyperbolic Reconstruction of Numerical Fluxes for Nonlinear Scalar Conservation Laws , 1994, SIAM J. Sci. Comput..

[4]  L. Petzold,et al.  Moving Mesh Methods with Upwinding Schemes for Time-Dependent PDEs , 1997 .

[5]  Eitan Tadmor,et al.  Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes , 1984 .

[6]  P. Mulet,et al.  A flux-split algorithm applied to conservative models for multicomponent compressible flows , 2003 .

[7]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[8]  Randall J. LeVeque,et al.  A wave propagation method for three-dimensional hyperbolic conservation laws , 2000 .

[9]  J. Haas,et al.  Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities , 1987, Journal of Fluid Mechanics.

[10]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[11]  H. Joachim Schroll Relaxed High Resolution Schemes for Hyperbolic Conservation Laws , 2004, J. Sci. Comput..

[12]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[13]  Robert Artebrant,et al.  Limiter-Free Third Order Logarithmic Reconstruction , 2006, SIAM J. Sci. Comput..

[14]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[15]  Mo Samimy,et al.  A Gallery of Fluid Motion , 2004 .

[16]  C. Schulz-Rinne,et al.  Classification of the Riemann problem for two-dimensional gas dynamics , 1991 .

[17]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[18]  Robert Artebrant,et al.  Conservative Logarithmic Reconstructions and Finite Volume Methods , 2005, SIAM J. Sci. Comput..

[19]  Smadar Karni,et al.  Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .

[20]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[21]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .