Methotrexate-conjugated to polymer quantum dot for cytotoxicity effect improved against MCF-7 and Hela cells

[1]  M. Rashidi,et al.  Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells , 2016, Journal of drug targeting.

[2]  G. Coukos,et al.  Erratum to: Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells , 2015, Journal of Nanobiotechnology.

[3]  G. Coukos,et al.  An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients. , 2015, Nanoscale.

[4]  T. Garg,et al.  Therapeutic potential of nanocarrier for overcoming to P-glycoprotein , 2014, Journal of drug targeting.

[5]  Jaleh Barar,et al.  Impacts of quantum dots in molecular detection and bioimaging of cancer , 2014, BioImpacts : BI.

[6]  K. Ou,et al.  Methotrexate-conjugated AgInS2/ZnS quantum dots for optical imaging and drug delivery , 2014 .

[7]  Y. Omidi,et al.  Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines , 2014, BioImpacts : BI.

[8]  D. Fan,et al.  Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. , 2014, Cancer letters.

[9]  G. Coukos,et al.  Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer , 2014, International journal of nanomedicine.

[10]  Y. Omidi,et al.  Surface modified multifunctional nanomedicines for simultaneous imaging and therapy of cancer , 2014, BioImpacts : BI.

[11]  Z. Gu,et al.  Self-assembly Polyrotaxanes Nanoparticles as Carriers for Anticancer Drug Methotrexate Delivery , 2014 .

[12]  R. Yumoto,et al.  Folic acid-modified methotrexate-conjugated PEGylated poly(ε-caprolactone) nanoparticles for targeted delivery , 2014, Journal of Nanoparticle Research.

[13]  Jaleh Barar,et al.  Dysregulated pH in Tumor Microenvironment Checkmates Cancer Therapy. , 2013, BioImpacts : BI.

[14]  Gengfeng Zheng,et al.  Carbon Nanodots Featuring Efficient FRET for Real‐Time Monitoring of Drug Delivery and Two‐Photon Imaging , 2013, Advanced materials.

[15]  F. Bordi,et al.  Polymeric hollow micro and nanospheres for biotechnological applications: A focused review , 2013 .

[16]  P. Johnston,et al.  Cancer drug resistance: an evolving paradigm , 2013, Nature Reviews Cancer.

[17]  N. Mishra,et al.  Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. , 2013, Journal of materials chemistry. B.

[18]  Xuexiang Weng,et al.  Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(III). , 2013, Nanoscale.

[19]  G. Coukos,et al.  Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. , 2013, Colloids and surfaces. B, Biointerfaces.

[20]  M. Infante,et al.  In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. , 2013, Biomaterials.

[21]  K. Neoh,et al.  Methotrexate-conjugated and hyperbranched polyglycerol-grafted Fe₃O₄ magnetic nanoparticles for targeted anticancer effects. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[22]  Supachoke Mangmool,et al.  Pectin nanoparticle enhances cytotoxicity of methotrexate against hepG2 cells , 2013, Drug delivery.

[23]  Danjun Wu,et al.  Preparation, evaluation, and in vitro release of folic acid conjugated O‐carboxymethyl chitosan nanoparticles loaded with methotrexate , 2012 .

[24]  H. Cui,et al.  Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. , 2012, Chemical communications.

[25]  Hicham A. Chibli,et al.  Comparative cytotoxicity of gold–doxorubicin and InP–doxorubicin conjugates , 2012, Nanotechnology.

[26]  Clemens Burda,et al.  The unique role of nanoparticles in nanomedicine : imaging , drug delivery and therapy , 2012 .

[27]  R. Herrmann,et al.  Immunoliposomal delivery of doxorubicin can overcome multidrug resistance mechanisms in EGFR-overexpressing tumor cells , 2012, Journal of drug targeting.

[28]  Abdullah M. Asiri,et al.  Submicrometre-scale polyaniline colloidal spheres: photopolymerization preparation using fluorescent carbon nitride dots as a photocatalyst , 2012 .

[29]  Huan-Tsung Chang,et al.  Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. , 2012, Chemical communications.

[30]  D. Chiu,et al.  A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging. , 2012, Chemical communications.

[31]  Xu Li,et al.  Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process , 2011 .

[32]  Junfeng Zhai,et al.  Acid-driven, microwave-assisted production of photoluminescent carbon nitride dots from N,N-dimethylformamide , 2011 .

[33]  Junfeng Zhai,et al.  Preparation of photoluminescent carbon nitride dots from CCl4 and 1,2-ethylenediamine: a heat-treatment-based strategy , 2011 .

[34]  N. Hildebrandt Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. , 2011, ACS nano.

[35]  D. Chiu,et al.  Ratiometric temperature sensing with semiconducting polymer dots. , 2011, Journal of the American Chemical Society.

[36]  D. Chiu,et al.  Copper(II) and iron(II) ion sensing with semiconducting polymer dots. , 2011, Chemical communications.

[37]  Hicham A. Chibli,et al.  Ultrasmall gold-doxorubicin conjugates rapidly kill apoptosis-resistant cancer cells. , 2011, Bioconjugate chemistry.

[38]  R. Byers,et al.  Quantum dots brighten biological imaging. , 2011, Progress in histochemistry and cytochemistry.

[39]  D. Chiu,et al.  Development of ultrabright semiconducting polymer dots for ratiometric pH sensing. , 2011, Analytical chemistry.

[40]  S. N. Baker,et al.  Luminescent Carbon Nanodots: Emergent Nanolights , 2011 .

[41]  Xiaohu Gao,et al.  Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. , 2010, Chemical Society reviews.

[42]  Hong Ding,et al.  Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. , 2010, ACS nano.

[43]  G. Lv,et al.  Imaging and inhibition of multi-drug resistance in cancer cells via specific association with negatively charged CdTe quantum dots. , 2010, Biomaterials.

[44]  R. V. Omkumar,et al.  Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues. , 2010, Biotechnology advances.

[45]  J. Fletcher,et al.  ABC transporters in cancer: more than just drug efflux pumps , 2010, Nature Reviews Cancer.

[46]  Changfeng Wu,et al.  Nanoscale 3D tracking with conjugated polymer nanoparticles. , 2009, Journal of the American Chemical Society.

[47]  Ya‐Ping Sun,et al.  Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[48]  Nur Aida Adbul Rahim,et al.  Conjugated Polymer Nanoparticles for Two‐Photon Imaging of Endothelial Cells in a Tissue Model , 2009 .

[49]  B. Liu,et al.  Fluorescent Single-Molecular Core−Shell Nanospheres of Hyperbranched Conjugated Polyelectrolyte for Live-Cell Imaging , 2009 .

[50]  J. Panyam,et al.  Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[51]  Changfeng Wu,et al.  Ratiometric single-nanoparticle oxygen sensors for biological imaging. , 2009, Angewandte Chemie.

[52]  Nicklas Raun Jacobsen,et al.  Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice , 2009, Particle and Fibre Toxicology.

[53]  Changfeng Wu,et al.  Multicolor conjugated polymer dots for biological fluorescence imaging. , 2008, ACS nano.

[54]  Changfeng Wu,et al.  Swelling-controlled polymer phase and fluorescence properties of polyfluorene nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[55]  Moungi G Bawendi,et al.  Compact biocompatible quantum dots functionalized for cellular imaging. , 2008, Journal of the American Chemical Society.

[56]  Changfeng Wu,et al.  Conjugated polymer dots for multiphoton fluorescence imaging. , 2007, Journal of the American Chemical Society.

[57]  C. Mao,et al.  Fluorescent carbon nanoparticles derived from candle soot. , 2007, Angewandte Chemie.

[58]  Chao-Liang Wu,et al.  Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. , 2007, Molecular pharmaceutics.

[59]  Changfeng Wu,et al.  Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles. , 2006, The journal of physical chemistry. B.

[60]  M. Gottesman,et al.  Targeting multidrug resistance in cancer , 2006, Nature Reviews Drug Discovery.

[61]  V. Singh,et al.  Vibrational spectrum of glycine molecule. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[62]  Miqin Zhang,et al.  Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[63]  Masato Yasuhara,et al.  Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification , 2004 .

[64]  G. Kruh,et al.  The MRP family of drug efflux pumps , 2003, Oncogene.

[65]  U. Jaehde,et al.  Biochemical and Clinical Aspects of Methotrexate Neurotoxicity , 2003, Chemotherapy.

[66]  Paras N. Prasad,et al.  Introduction to Biophotonics , 2003 .

[67]  Stephen J Benkovic,et al.  Interaction of dihydrofolate reductase with methotrexate: Ensemble and single-molecule kinetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Debabrata Banerjee,et al.  Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase. , 2002, Biochimica et biophysica acta.

[69]  M. Kubista,et al.  Absorption and fluorescence properties of fluorescein , 1995 .

[70]  Horst Weller,et al.  Quantized Semiconductor Particles: A novel state of matter for materials science , 1993 .

[71]  L. Brus,et al.  Quantum crystallites and nonlinear optics , 1991 .

[72]  Louis E. Brus,et al.  The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots") , 1990 .

[73]  A. Henglein,et al.  Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles , 1989 .

[74]  A. I. Ekimov,et al.  Quantum size effect in semiconductor microcrystals , 1985 .

[75]  Jingqi Tian,et al.  A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose , 2012 .

[76]  I. Tannock,et al.  Drug resistance in metastatic castration-resistant prostate cancer , 2011, Nature Reviews Clinical Oncology.

[77]  M. Gottesman,et al.  Multidrug resistance in cancer: role of ATP–dependent transporters , 2002, Nature Reviews Cancer.