On Rényi entropy power inequalities

This work introduces Rényi entropy power inequalities (R-EPIs) for sums of independent random vectors, improving recent R-EPIs by Bobkov and Chistyakov. The latter work inspired the derivation of the improved bounds.

[1]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[2]  Naresh Sharma,et al.  Entropy power inequality for a family of discrete random variables , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[3]  Shlomo Shamai,et al.  The Interplay Between Information and Estimation Measures , 2013, Found. Trends Signal Process..

[4]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[5]  Mokshay Madiman,et al.  On the entropy of sums , 2008, 2008 IEEE Information Theory Workshop.

[6]  Christophe Vignat,et al.  AN ENTROPY POWER INEQUALITY FOR THE BINOMIAL FAMILY , 2003 .

[7]  Shlomo Shamai,et al.  Mutual information and minimum mean-square error in Gaussian channels , 2004, IEEE Transactions on Information Theory.

[8]  Oliver Johnson,et al.  Monotonicity, Thinning, and Discrete Versions of the Entropy Power Inequality , 2009, IEEE Transactions on Information Theory.

[9]  Jae Oh Woo,et al.  A discrete entropy power inequality for uniform distributions , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[10]  S. Bobkov,et al.  Bounds on the Maximum of the Density for Sums of Independent Random Variables , 2014 .

[11]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[12]  Thomas A. Courtade,et al.  Strengthening the entropy power inequality , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[13]  Giuseppe Toscani,et al.  The Concavity of Rényi Entropy Power , 2014, IEEE Transactions on Information Theory.

[14]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[15]  Patrick P. Bergmans,et al.  A simple converse for broadcast channels with additive white Gaussian noise (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[16]  Varun Jog,et al.  The Entropy Power Inequality and Mrs. Gerber's Lemma for Groups of Order 2n , 2014, IEEE Trans. Inf. Theory.

[17]  Shlomo Shamai,et al.  A binary analog to the entropy-power inequality , 1990, IEEE Trans. Inf. Theory.

[18]  Tie Liu,et al.  An Extremal Inequality Motivated by Multiterminal Information Theoretic Problems , 2006, ISIT.

[19]  Jean-François Bercher,et al.  A Renyi entropy convolution inequality with application , 2002, 2002 11th European Signal Processing Conference.

[20]  Sergey G. Bobkov,et al.  On the problem of reversibility of the entropy power inequality , 2011, ArXiv.

[21]  E. Lieb,et al.  Best Constants in Young's Inequality, Its Converse, and Its Generalization to More than Three Functions , 1976 .

[22]  Amir Dembo,et al.  Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.

[23]  A. Rényi On Measures of Entropy and Information , 1961 .

[24]  Liyao Wang,et al.  Beyond the Entropy Power Inequality, via Rearrangements , 2013, IEEE Transactions on Information Theory.

[25]  Mokshay Madiman,et al.  Entropy Bounds on Abelian Groups and the Ruzsa Divergence , 2015, IEEE Transactions on Information Theory.

[26]  O. Johnson Information Theory And The Central Limit Theorem , 2004 .

[27]  Emre Telatar,et al.  A New Entropy Power Inequality for Integer-Valued Random Variables , 2014, IEEE Trans. Inf. Theory.

[28]  Giuseppe Toscani,et al.  A Strengthened Entropy Power Inequality for Log-Concave Densities , 2014, IEEE Transactions on Information Theory.

[29]  Shlomo Shamai,et al.  Proof of Entropy Power Inequalities Via MMSE , 2006, 2006 IEEE International Symposium on Information Theory.

[30]  Ofer Shayevitz,et al.  On Rényi measures and hypothesis testing , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[31]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[32]  Peng Xu,et al.  Forward and Reverse Entropy Power Inequalities in Convex Geometry , 2016, ArXiv.

[33]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[34]  Nelson M. Blachman,et al.  The convolution inequality for entropy powers , 1965, IEEE Trans. Inf. Theory.

[35]  Mokshay M. Madiman,et al.  Generalized Entropy Power Inequalities and Monotonicity Properties of Information , 2006, IEEE Transactions on Information Theory.

[36]  Sergey G. Bobkov,et al.  Entropy Power Inequality for the Rényi Entropy , 2015, IEEE Transactions on Information Theory.

[37]  Igal Sason,et al.  On Rényi Entropy Power Inequalities , 2016, IEEE Transactions on Information Theory.

[38]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[39]  Peter Harremoës,et al.  Rényi Divergence and Kullback-Leibler Divergence , 2012, IEEE Transactions on Information Theory.

[40]  Sergey G. Bobkov,et al.  Dimensional behaviour of entropy and information , 2011, ArXiv.

[41]  Max H. M. Costa,et al.  A new entropy power inequality , 1985, IEEE Trans. Inf. Theory.

[42]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[43]  F. Barthe Optimal young's inequality and its converse: a simple proof , 1997, math/9704210.

[44]  Serge Fehr,et al.  On the Conditional Rényi Entropy , 2014, IEEE Transactions on Information Theory.

[45]  C. Vignat,et al.  Some results concerning maximum Renyi entropy distributions , 2005, math/0507400.

[46]  William Beckner,et al.  Inequalities in Fourier Analysis on Rn , 1975 .

[47]  Yasutada Oohama,et al.  The Rate-Distortion Function for the Quadratic Gaussian CEO Problem , 1998, IEEE Trans. Inf. Theory.

[48]  Olivier Rioul,et al.  Information Theoretic Proofs of Entropy Power Inequalities , 2007, IEEE Transactions on Information Theory.

[49]  Jae Oh Woo,et al.  A lower bound on the Rényi entropy of convolutions in the integers , 2014, 2014 IEEE International Symposium on Information Theory.

[50]  Sergio Verdú,et al.  A simple proof of the entropy-power inequality , 2006, IEEE Transactions on Information Theory.