Assimilating VLF Transmitter Observations With an LETKF for Spatial Estimates of the ${D}$ -Region Ionosphere

The <inline-formula> <tex-math notation="LaTeX">${D}$ </tex-math></inline-formula>-region ionosphere plays an important role in coupling the neutral atmosphere to denser ionospheric plasma above. Practically, it impacts long-range radio communications between extremely low frequencies (ELFs), where communications are enabled by the layer, and high frequencies (HFs), which are attenuated by the layer. A combination of its altitude and extremely low electron density means that it is difficult to make measurements of the region using typical ionospheric remote sensing techniques, and our knowledge of the <inline-formula> <tex-math notation="LaTeX">${D}$ </tex-math></inline-formula>-region is limited as a result. This article presents the development of an ensemble Kalman filter method to spatially map <inline-formula> <tex-math notation="LaTeX">${D}$ </tex-math></inline-formula>-region electron density profiles over the continental United States using an array of very low frequency (VLF) radio transmitters and receivers. Data assimilation has previously been used to estimate higher altitude regions of the ionosphere, but its application to VLF radio measurements and the <inline-formula> <tex-math notation="LaTeX">${D}$ </tex-math></inline-formula>-region is new. The technique has several favorable features, including statistical confidence measures with every estimate, the ability to localize the influence of measurements, inclusion of physically realistic spatial correlations, relatively fast convergence, and the ability to add observations to the estimate as they become available. We describe the filter and present results for day, night, and terminator ionospheres using simulated data. We also present a study on the robustness of the filter when initialized with a prior that is far from the true ionosphere. The method shows promise for application to real data in the near future, especially for estimating the characteristics of large-scale features in the <inline-formula> <tex-math notation="LaTeX">${D}$ </tex-math></inline-formula>-region.

[1]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[2]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[3]  J. A. Ferguson Ionospheric model validation at VLF and LF , 1995 .

[4]  James R. Wait,et al.  Characteristics of the earth-ionosphere waveguide for VLF radio waves , 1964 .

[5]  R. Said,et al.  Spatial and Temporal Ionospheric Monitoring Using Broadband Sferic Measurements , 2018 .

[6]  A. Mitra The D-region of the ionosphere , 1978 .

[7]  Umran S. Inan,et al.  Scattering pattern of lightning‐induced ionospheric disturbances associated with early/fast VLF events , 1999 .

[8]  J. A. Ferguson,et al.  The Segmented Waveguide Program for Long Wavelength Propagation Calculations. , 1987 .

[9]  N. Thomson,et al.  Nighttime ionospheric D region: Equatorial and nonequatorial , 2009 .

[10]  Michael Turbe,et al.  Finite-Difference Modeling of Very-Low-Frequency Propagation in the Earth-Ionosphere Waveguide , 2017, IEEE Transactions on Antennas and Propagation.

[11]  A. J. Zmuda,et al.  Very low frequency disturbances and the high‐altitude nuclear explosion of July 9, 1962 , 1963 .

[12]  K. Torkar,et al.  FIRI‐2018, an Updated Empirical Model of the Lower Ionosphere , 2018, Journal of Geophysical Research: Space Physics.

[13]  Fuqing Zhang,et al.  Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation , 2016 .

[14]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[15]  J. Whitaker,et al.  Localizing the impact of satellite radiance observations using a global group ensemble filter , 2016 .

[16]  A. Jacobson,et al.  D region electron profiles observed with substantial spatial and temporal change near thunderstorms , 2014 .

[17]  Jeffrey Chang,et al.  Broadband longwave radio remote sensing instrumentation. , 2018, The Review of scientific instruments.

[18]  E. R. Swanson ELF-VLF Applications in Navigation and Communications , 1974 .

[19]  R. Schunk,et al.  Data Assimilation Models: A ‘New’ Tool for Ionospheric Science and Applications , 2011 .

[20]  D. Siskind,et al.  An Intercomparison of VLF and Sounding Rocket Techniques for Measuring the Daytime D Region Ionosphere: Theoretical Implications , 2018, Journal of Geophysical Research: Space Physics.

[21]  Umran S. Inan,et al.  A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges , 2010 .

[22]  David G Morfitt,et al.  'MODESRCH', An Improved Computer Program for Obtaining ELF/VLF/LF Mode Constants in an Earth-Ionosphere Waveguide , 1976 .

[23]  M. Clilverd,et al.  Nighttime ionospheric D region parameters from VLF phase and amplitude , 2007 .

[24]  Umran S. Inan,et al.  VLF signatures of ionospheric disturbances associated with sprites , 1995 .

[25]  Y. Hobara,et al.  Mid-latitude atmosphere and ionosphere connection as revealed by very low frequency signals , 2016 .

[26]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[27]  Umran S. Inan,et al.  Mitigation of 50–60 Hz power line interference in geophysical data , 2010 .

[28]  J. Klobuchar Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[29]  W. Piggott,et al.  Ionospheric absorption measurements during a sunspot cycle , 1954 .

[30]  B. C. Edgar,et al.  Precipitation of inner zone electrons by whistler mode waves from the VLF transmitters UMS and NWC , 1981 .

[31]  P. Tamarkin,et al.  A note on the cause of sudden ionization anomalies in regions remote from high-altitude nuclear bursts , 1961 .

[32]  K. Torkar,et al.  FIRI: A semiempirical model of the lower ionosphere , 2001 .

[33]  C. Rodger,et al.  Daytime midlatitude D region parameters at solar minimum from short-path VLF phase and amplitude , 2011 .

[34]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[35]  C. H. Shellman A new version of MODESRCH using interpolated values of the magnetoionic reflection coefficients , 1986 .

[36]  U. Inan,et al.  Early VLF perturbations caused by lightning EMP‐driven dissociative attachment , 2008 .

[37]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[38]  E. Lay,et al.  High temporal and spatial‐resolution detection of D‐layer fluctuations by using time‐domain lightning waveforms , 2010 .

[39]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[40]  Umran S. Inan,et al.  Ionospheric D region remote sensing using VLF radio atmospherics , 1998 .

[41]  M. Cohen,et al.  D-region Ionospheric Imaging Using VLF/LF Broadband Sferics, Forward Modeling, and Tomography , 2017 .

[42]  M. McHarg,et al.  Plasma irregularities in the D-region ionosphere in association with sprite streamer initiation , 2014, Nature Communications.

[43]  Istvan Szunyogh,et al.  Assimilating non-local observations with a local ensemble Kalman filter , 2007 .

[44]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[45]  M. Nicolet,et al.  The formation of the D region of the ionosphere , 1960 .

[46]  S. Cummer,et al.  Broadband VLF measurements of lightning‐induced ionospheric perturbations , 2005 .

[47]  M. Rapp,et al.  News from the Lower Ionosphere: A Review of Recent Developments , 2009 .

[48]  E. Araujo‐Pradere,et al.  Ionospheric assimilation of radio occultation and ground-based GPS data using non-stationary background model error covariance , 2014 .

[49]  J. A. Ferguson,et al.  Computer Programs for Assessment of Long-Wavelength Radio Communications, Version 2.0: User's Guide and Source Files , 1998 .

[50]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[51]  Astrid Maute,et al.  Development and Validation of the Whole Atmosphere Community Climate Model With Thermosphere and Ionosphere Extension (WACCM‐X 2.0) , 2018 .

[52]  M. Gołkowski,et al.  Ionospheric D Region Remote Sensing Using ELF Sferic Group Velocity , 2018, Geophysical Research Letters.

[53]  N. Smirnova,et al.  Modelling of the lower ionosphere , 1988 .

[54]  Umran S. Inan,et al.  Sensitive Broadband ELF/VLF Radio Reception With the AWESOME Instrument , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[55]  M. Spasojević,et al.  Extended lateral heating of the nighttime ionosphere by ground‒based VLF transmitters , 2013 .

[56]  R. Marshall,et al.  Very low frequency subionospheric remote sensing of thunderstorm‐driven acoustic waves in the lower ionosphere , 2014 .

[57]  Craig J. Rodger,et al.  Sunrise effects on VLF signals propagating over a long north‐south path , 1999 .

[58]  J. A. Ferguson Ionospheric profiles for predicting nighttime VLF/LF propagation. Determination of an effective (exponential) model for use in design and deployment of resources for communication and navigation , 1980 .

[59]  Istvan Szunyogh,et al.  A local ensemble Kalman filter for atmospheric data assimilation , 2004 .