Total Generalized Variation in Diffusion Tensor Imaging

We study the extension of total variation (TV), total deformation (TD), and (second-order) total generalized variation ($\TGV^2$) to symmetric tensor fields. We show that for a suitable choice of finite-dimensional norm, these variational seminorms are rotation-invariant in a sense natural and well suited for application to diffusion tensor imaging (DTI). Combined with a positive definiteness constraint, we employ these novel seminorms as regularizers in Rudin--Osher--Fatemi (ROF) type denoising of medical in vivo brain images. For the numerical realization, we employ the Chambolle--Pock algorithm, for which we develop a novel duality-based stopping criterion which guarantees error bounds with respect to the functional values. Our findings indicate that TD and $\TGV^2$, both of which employ the symmetrized differential, provide improved results compared to other evaluated approaches.

[1]  Bernhard Burgeth,et al.  Variational Methods for Denoising Matrix Fields , 2009 .

[2]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  O. Scherzer,et al.  A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators , 2007 .

[4]  R. Bishop,et al.  Tensor Analysis on Manifolds , 1980 .

[5]  Luc Florack,et al.  Multiplicative Calculus in Biomedical Image Analysis , 2011, Journal of Mathematical Imaging and Vision.

[6]  Rachid Deriche,et al.  Orthonormal Vector Sets Regularization with PDE's and Applications , 2002, International Journal of Computer Vision.

[7]  Murat Aksoy,et al.  Single‐step nonlinear diffusion tensor estimation in the presence of microscopic and macroscopic motion , 2008, Magnetic resonance in medicine.

[8]  K. Bredies Symmetric tensor fields of bounded deformation , 2013 .

[9]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[10]  Luc Florack,et al.  A multi-resolution framework for diffusion tensor images , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[11]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[12]  Ofer Pasternak,et al.  Fast GL(n)-Invariant Framework for Tensors Regularization , 2009, International Journal of Computer Vision.

[13]  Joachim Hornegger,et al.  Real‐time optical motion correction for diffusion tensor imaging , 2011, Magnetic resonance in medicine.

[14]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[15]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[16]  Jens Frahm,et al.  Inverse reconstruction method for segmented multishot diffusion‐weighted MRI with multiple coils , 2009, Magnetic resonance in medicine.

[17]  Murat Aksoy,et al.  Augmented generalized SENSE reconstruction to correct for rigid body motion , 2007, Magnetic resonance in medicine.

[18]  Jacques-Donald Tournier,et al.  Diffusion tensor imaging and beyond , 2011, Magnetic resonance in medicine.

[19]  Carl-Fredrik Westin,et al.  Restoration of DWI Data Using a Rician LMMSE Estimator , 2008, IEEE Transactions on Medical Imaging.

[20]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[21]  H. Fédérer Geometric Measure Theory , 1969 .

[22]  Rachid Deriche,et al.  Diffusion tensor regularization with constraints preservation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[23]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[24]  J. Swart,et al.  The Metric Theory of Tensor Products (Grothendieck's Résumé Revisited) Part 1: Tensor Norms , 2002 .

[25]  Joe Diestel,et al.  The metric theory of tensor products , 2008 .

[26]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[27]  K. Kunisch,et al.  Properties of L1-TGV2: The one-dimensional case , 2013 .

[28]  Rachid Deriche,et al.  Constrained Flows of Matrix-Valued Functions: Application to Diffusion Tensor Regularization , 2002, ECCV.

[29]  Maxim Zaitsev,et al.  Prospective motion correction with continuous gradient updates in diffusion weighted imaging , 2012, Magnetic resonance in medicine.

[30]  N. Ayache,et al.  Fast and Simple Computations on Tensors with Log-Euclidean Metrics. , 2005 .

[31]  Tuomo Valkonen,et al.  Diff-convex combinations of Euclidean distances: a search for optima , 2008 .

[32]  A. Lewis The Convex Analysis of Unitarily Invariant Matrix Functions , 1995 .

[33]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[34]  N. Ayache,et al.  Clinical DT-MRI Estimation, Smoothing, and Fiber Tracking With Log-Euclidean Metrics , 2007 .

[35]  Simon R. Arridge,et al.  Diffusion tensor magnetic resonance image regularization , 2004, Medical Image Anal..

[36]  Zhizhou Wang,et al.  A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI , 2004, IEEE Transactions on Medical Imaging.

[37]  Isabelle Bloch,et al.  Regularization of MR Diffusion Tensor Maps for Tracking Brain White Matter Bundles , 1998, MICCAI.

[38]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[39]  Derek K. Jones,et al.  Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .

[40]  Roger Temam,et al.  Mathematical Problems in Plasticity , 1985 .

[41]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[42]  T. Pock,et al.  Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.