Effect of rolling on dissipation in fault gouges.

Sliding and rolling are two outstanding deformation modes in granular media. The first one induces frictional dissipation whereas the latter one involves deformation with negligible resistance. Using numerical simulations on two-dimensional shear cells, we investigate the effect of the grain rotation on the energy dissipation and the strength of granular materials under quasistatic shear deformation. Rolling and sliding are quantified in terms of the so-called Cosserat rotations. The observed spontaneous formation of vorticity cells and clusters of rotating bearings may provide an explanation for the long standing heat flow paradox of earthquake dynamics.

[1]  Peter Mora,et al.  Simulation of the frictional stick-slip instability , 1994 .

[2]  G Ravichandran,et al.  Observations of transient high temperature vortical microstructures in solids during adiabatic shear banding. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  M. Jean,et al.  Numerical investigation of granular interfaces kinematics , 2000 .

[4]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[5]  Katalin Bagi,et al.  A definition of particle rolling in a granular assembly in terms of particle translations and rotations , 2004 .

[6]  村上 章,et al.  DISLOCATION, VORTEX AND COUPLE STRESS IN THE FORMATION OF SHEAR BANDS UNDER TRAP-DOOR PROBLEMS , 1997 .

[7]  P. Mora,et al.  The weakness of earthquake faults , 1999 .

[8]  A. Lachenbruch,et al.  Heat flow from Cajon Pass, fault strength, and tectonic implications , 1992 .

[9]  D. Lieberman,et al.  Particle size and energetics of gouge from earthquake rupture zones , 2022 .

[10]  Ekkehard Ramm,et al.  From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses , 2003 .

[11]  M. Boulon,et al.  Experimental characterization of the thermo-poro-mechanical properties of the Aegion Fault gouge , 2004 .

[12]  W. Guenther,et al.  Zur Statik und Kinematik des Cosseratschen Kontinuums , 1958 .

[13]  Jacek Tejchman,et al.  Numerical simulation of shear band formation with a polar hypoplastic constitutive model , 1996 .

[14]  Katalin Bagi,et al.  Alternative Definition of Particle Rolling in a Granular Assembly , 2004 .

[15]  I. Vardoulakis,et al.  The thickness of shear bands in granular materials , 1987 .

[16]  Farhang Radjai,et al.  Turbulentlike fluctuations in quasistatic flow of granular media. , 2002, Physical review letters.

[17]  Antoinette Tordesillas,et al.  Bridging the Length Scales: Micromechanics of Granular Media , 2004 .

[18]  D. Wood Soil Behaviour and Critical State Soil Mechanics , 1991 .

[19]  Matthew R. Kuhn,et al.  Structured deformation in granular materials , 1999 .

[20]  Frank H. Webb,et al.  Slow But Not Quite Silent , 2003, Science.

[21]  H. Herrmann,et al.  Space-filling bearings in three dimensions. , 2003, Physical review letters.

[22]  Thorsten Pöschel,et al.  Computational Granular Dynamics , 2005 .

[23]  Herrmann,et al.  Granular packings and fault zones , 2000, Physical review letters.

[24]  Erfan G. Nezami,et al.  A micromechanical study of rolling and sliding contacts in assemblies of oval granules , 2003 .

[25]  Peter Mora,et al.  Macroscopic Friction Response of Rotational and Non-Rotational Lattice Solid Gouge Models in 2D and 3D , 2005 .

[26]  I. Vardoulakis,et al.  Bifurcation Analysis in Geomechanics , 1995 .

[27]  J. Rice Heating and weakening of faults during earthquake slip , 2006 .

[28]  I. Vardoulakis,et al.  Bifurcation analysis of deep boreholes: II. Scale effect , 1989 .

[29]  R. Behringer,et al.  KINEMATICS OF A TWO-DIMENSIONAL GRANULAR COUETTE EXPERIMENT AT THE TRANSITION TO SHEARING , 1999 .

[30]  C. Scholz Earthquakes and friction laws , 1998, Nature.

[31]  I. Vardoulakis,et al.  Numerical treatment of progressive localization in relation to borehole stability , 1992 .