Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides
暂无分享,去创建一个
H. Zeng | Xianhui Chen | W. Yao | Shijie Xu | X. Cui | Gui-Bin Liu | J. Dai | B. Zhu | Yajun Yan | Ruicong He | Lu Xie | Bairen Zhu
[1] P. Tan,et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.
[2] A. Javey,et al. High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.
[3] Ji Feng,et al. Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.
[4] Keliang He,et al. Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.
[5] Walter R. L. Lambrecht,et al. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .
[6] Wang Yao,et al. Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.
[7] Wang Yao,et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.
[8] Yingchun Cheng,et al. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .
[9] L. Wirtz,et al. Phonons in single-layer and few-layer MoS2 , 2011 .
[10] T. Korn,et al. Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.
[11] A. Radenović,et al. Single-layer MoS2 transistors. , 2011, Nature nanotechnology.
[12] J. Coleman,et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.
[13] D. Late,et al. MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.
[14] J. Shan,et al. Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.
[15] A. Splendiani,et al. Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.
[16] S. Lebègue,et al. Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.
[17] Xavier Gonze,et al. Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure , 2008 .
[18] Wang Yao,et al. Valley-dependent optoelectronics from inversion symmetry breaking , 2007, 0705.4683.
[19] G. Galli,et al. Electronic properties of MoS2 nanoparticles , 2007 .
[20] Wang Yao,et al. Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.
[21] Xavier Gonze,et al. A brief introduction to the ABINIT software package , 2005 .
[22] K. Novoselov,et al. Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[23] Andre K. Geim,et al. Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.
[24] V. Podzorov,et al. High-mobility field-effect transistors based on transition metal dichalcogenides , 2004, cond-mat/0401243.
[25] Matthieu Verstraete,et al. First-principles computation of material properties: the ABINIT software project , 2002 .
[26] Xavier Gonze,et al. The ABINIT software project , 2001 .
[27] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[28] Partha P Banerjee,et al. Principles of Nonlinear Optics , 1989 .
[29] M. Levenson. The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.
[30] T. Wieting,et al. Lattice Mode Degeneracy in Mo S 2 and Other Layer Compounds , 1970 .
[31] G. Galli,et al. Electronic Properties of MoS 2 Nanoparticles , 2022 .