Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides

[1]  P. Tan,et al.  Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.

[2]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[3]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[4]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[5]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[6]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[7]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[8]  Yingchun Cheng,et al.  Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .

[9]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[10]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[11]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[12]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[13]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[14]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[15]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[16]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[17]  Xavier Gonze,et al.  Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure , 2008 .

[18]  Wang Yao,et al.  Valley-dependent optoelectronics from inversion symmetry breaking , 2007, 0705.4683.

[19]  G. Galli,et al.  Electronic properties of MoS2 nanoparticles , 2007 .

[20]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[21]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[22]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[24]  V. Podzorov,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004, cond-mat/0401243.

[25]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[26]  Xavier Gonze,et al.  The ABINIT software project , 2001 .

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  Partha P Banerjee,et al.  Principles of Nonlinear Optics , 1989 .

[29]  M. Levenson The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.

[30]  T. Wieting,et al.  Lattice Mode Degeneracy in Mo S 2 and Other Layer Compounds , 1970 .

[31]  G. Galli,et al.  Electronic Properties of MoS 2 Nanoparticles , 2022 .