Regularisierungsverfahren für die Identifikation mittels lokal-affiner Modelle (Regularization Techniques for Identification Using Local-Affine Models)

Untersucht werden Regularisierungsverfahren für die Identifikation nichtlinearer dynamischer Systeme mittels lokal-affiner Modelle. Die implizite Regularisierung durch lokale Parameterschätzung in Gleichungsfehler-Anordnung wird einer expliziten Regularisierung nach Tikhonov mit globaler Parameterschätzung in Ausgangsfehler-Anordnung gegenübergestellt. Nach Beschreibung von exakter und approximativer Tikhonov-Regularisierung zweiter Ordnung wird ein neuartiger global-lokaler Regularisierungsoperator speziell für lokal-affine Modelle hergeleitet, der die lokale Interpretierbarkeit der Teilmodelle garantiert. Regularization techniques for the identification of nonlinear dynamic systems using local-affine models are investigated. The implicit regularization by local parameter estimation in equation error structure is compared with the explicit regularization according to Tikhonov with global parameter estimation in output error structure. After the specification of exact and approximative Tikhonov regularization of second order, a novel global-local regularization operator is derived specifically for local-affine models which ensures the local interpretability of the submodels.

[1]  Simon Haykin,et al.  On Different Facets of Regularization Theory , 2002, Neural Computation.

[2]  T. A. Johansen,et al.  Robust identification of Takagi-Sugeno-Kang fuzzy models using regularization , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[3]  John E. Moody,et al.  The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems , 1991, NIPS.

[4]  Rolf Isermann,et al.  Identifikation dynamischer Systeme , 1988 .

[5]  Tor Arne Johansen,et al.  Multiobjective identification of Takagi-Sugeno fuzzy models , 2003, IEEE Trans. Fuzzy Syst..

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  O. Nelles Nonlinear System Identification , 2001 .

[8]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[9]  Roderick Murray-Smith,et al.  Multiple Model Approaches to Modelling and Control , 1997 .

[10]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[11]  Gang Feng,et al.  Analysis and design for a class of complex control systems Part I: Fuzzy modelling and identification , 1997, Autom..

[12]  Tor Arne Johansen,et al.  On Tikhonov regularization, bias and variance in nonlinear system identification , 1997, Autom..

[13]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[14]  Pinaki Mazumder Guest Editorial Special Section On Impacts Of Emerging Technologies On VLSI Systems , 1998, IEEE Trans. Very Large Scale Integr. Syst..

[15]  Susanne Ernst,et al.  Identification with Dynamic Neural Networks - Architectures, Comparisons, Applications , 1997 .

[16]  Susanne Töpfer Hierarchische neuronale Modelle für die Identifikation nichtlinearer Systeme , 2002 .

[17]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[18]  Euntai Kim,et al.  Identification of Takagi-Sugeno fuzzy models via clustering and Hough transform , 1997 .

[19]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[20]  Kevin Martin Bossley,et al.  Neurofuzzy modelling approaches in system identification , 1997 .

[21]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .