Determining economical maintenance intervals

Abstract Several models have been proposed for scheduling the preventive maintenance (PM) of complex repairable systems in industry. These are often application-specific and some make unrealistic assumptions about stationarity of the process and quality of repairs. We investigate two principal types of general model, which have wider applicability. The first considers fixed PM intervals and is based on the delayed alternating renewal process. The second is adaptable, allowing variable PM intervals, and is based on proportional hazards or intensities. We describe how Bayesian methods of analysis can improve the decision making process for these models and discuss simulation algorithms for fitting the models to observed data. Finally, we identify some issues that need more research.

[1]  O. Bouamra,et al.  Bayesian analysis of fixed-interval preventive-maintenance models , 1998 .

[2]  Martin Crowder,et al.  Statistical Analysis of Reliability Data , 1991 .

[3]  Khairy A.H. Kobbacy,et al.  Setting preventive maintenance schedules when data are sparse , 1997 .

[4]  R. Schafer Bayesian Reliability Analysis , 1983 .

[5]  Anthony O'Hagan,et al.  Kendall's Advanced Theory of Statistics: Vol. 2B, Bayesian Inference. , 1996 .

[6]  Khairy A.H. Kobbacy,et al.  Using proportional-intensities models to schedule preventive-maintenance intervals , 1998 .

[7]  H. Jeffreys,et al.  Theory of probability , 1896 .

[8]  J. S. Dagpunar,et al.  Optimizing System Availability Under Minimal Repair with Non-Negligible Repair and Replacement Times , 1993 .

[9]  Philip A. Scarf,et al.  On the application of mathematical models in maintenance , 1997 .

[10]  Khairy A.H. Kobbacy,et al.  A full history proportional hazards model for preventive maintenance scheduling , 1997 .

[11]  Süleyman Özekici,et al.  Reliability and Maintenance of Complex Systems , 2010, NATO ASI Series.

[12]  J. Handlarski Mathematical Analysis of Preventive Maintenance Schemes , 1980 .

[13]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[14]  A. H. Christer,et al.  A simple condition monitoring modelfor a direct monitoring process , 1995 .

[15]  Frank Van Der Duyn Schouten Maintenance Policies for Multicomponent Systems: An Overview , 1996 .

[16]  Ulf Westberg,et al.  Maintenance scheduling under age replacement policy using proportional hazards model and TTT-plotting , 1997 .

[17]  Martin Crowder,et al.  Statistical Analysis of Reliability Data , 1991 .

[18]  Rommert Dekker,et al.  How to determine maintenance frequencies for multi-component systems: a general approach , 1996 .

[19]  Khairy A.H. Kobbacy,et al.  Sensitivity analyses for preventive-maintenance models , 1995 .

[20]  Viliam Makis,et al.  Optimal Replacement In The Proportional Hazards Model , 1992 .