Raman analyses of Al and Fe/Mg‐rich clays: Challenges and possibilities for planetary missions

[1]  Q. Yao,et al.  Reliable spectroscopic identification of minerals associated with serpentinization: Relevance to Mars exploration , 2023, Icarus.

[2]  C. Zhou,et al.  Enigmatic Issues and Widening Implications of Research on Martian Clay Minerals , 2022, ACS Earth and Space Chemistry.

[3]  V. Rajesh,et al.  Serpentine-magnesite association of Salem Ultramafic Complex, southern India: A potential analogue for mars , 2022, Planetary and Space Science.

[4]  I. Hutchinson,et al.  Fe-Rich Fossil Vents as Mars Analog Samples: Identification of Extinct Chimneys in Miocene Marine Sediments Using Raman Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy. , 2022, Astrobiology.

[5]  A. Molina,et al.  Raman spectroscopic peculiarities of Icelandic poorly crystalline minerals and their implications for Mars exploration , 2022, Scientific Reports.

[6]  Alian Wang,et al.  Crystallinity effects on the vibrational spectral features of saponite: Implications for characterizing variable crystalline phyllosilicates on Mars , 2022, Icarus.

[7]  B. Pejcic,et al.  Chemistry-dependent Raman spectral features of glauconite and nontronite: Implications for mineral identification and provenance analysis , 2021, American Mineralogist.

[8]  C. Cousins,et al.  Multiscale spectral discrimination of poorly-crystalline and intermixed alteration phases using aerial and ground-based ExoMars rover emulator data , 2021 .

[9]  M. J. Calaway,et al.  Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation , 2021, Space Science Reviews.

[10]  K. Ikehata,et al.  Raman microspectroscopic study of reference clay minerals and alteration minerals in volcanic ejecta from the 7 March 2012 phreatic eruption on Ioto Island (Iwo-jima), Izu-Bonin arc, Japan , 2021 .

[11]  G. Arana,et al.  Characterization of sedimentary and volcanic rocks in Armintza outcrop (Biscay, Spain) and its implication for Oxia Planum (Mars) exploration. , 2021, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[12]  P. Allemand,et al.  Oxia Planum: The Landing Site for the ExoMars “Rosalind Franklin” Rover Mission: Geological Context and Prelanding Interpretation , 2021, Astrobiology.

[13]  David I. Ellis,et al.  Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study. , 2020, Analytical chemistry.

[14]  F. Poulet,et al.  ExoMars Raman Laser Spectrometer: A Tool to Semiquantify the Serpentinization Degree of Olivine-Rich Rocks on Mars. , 2020, Astrobiology.

[15]  J. T. Kloprogge,et al.  Spectroscopic Studies of Synthetic and Natural Saponites: A Review , 2020, Minerals.

[16]  R. Léveillé,et al.  Data fusion of laser-induced breakdown and Raman spectroscopies: Enhancing clay mineral identification , 2020 .

[17]  Honglong Wang,et al.  An intensive exploration on structure transformation of talc under γ-ray irradiation at 0–1000 kGy , 2020, Journal of Radioanalytical and Nuclear Chemistry.

[18]  G. Christidis,et al.  Characterization and origin of two Fe-rich bentonites from Westerwald (Germany) , 2020 .

[19]  C. Pilorget,et al.  Raman Laser Spectrometer (RLS) calibration target design to allow onboard combined science between the RLS and MicrOmega instruments on the ExoMars rover , 2020 .

[20]  H. Edwards,et al.  Raman spectra of a graphite–nontronite association in marbles from Oltrek Island (Lake Baikal, Russia) , 2019 .

[21]  Gordon R. Osinski,et al.  Field and laboratory validation of remote rover operations Science Team findings: The CanMars Mars Sample Return analogue mission , 2019, Planetary and Space Science.

[22]  S. F. Vallejuelo,et al.  New Raman–visible near‐infrared database of inorganic and mineralogical planetary and terrestrial compounds and its implications for Mars: Phyllosilicates , 2019, Journal of Raman Spectroscopy.

[23]  J. Grant,et al.  The science process for selecting the landing site for the 2020 Mars rover , 2018, Planetary and Space Science.

[24]  E. Jessberger,et al.  Raman spectra of hydrous minerals investigated under various environmental conditions in preparation for planetary space missions , 2018, Journal of Raman Spectroscopy.

[25]  B. Hynek,et al.  Characterization of terrestrial hydrothermal alteration products with mars analog instrumentation: implications for current and future rover investigations , 2017 .

[26]  Gianfranco Visentin,et al.  Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover , 2017, Astrobiology.

[27]  MedinaJesús,et al.  The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars , 2017 .

[28]  J. Head,et al.  Sedimentological evidence for a deltaic origin of the western fan deposit in Jezero crater, Mars and implications for future exploration , 2017 .

[29]  R. Wordsworth The Climate of Early Mars , 2016, 1606.02813.

[30]  J. A. Rodríguez-Losada,et al.  Raman-Mössbauer-XRD studies of selected samples from “Los Azulejos” outcrop: A possible analogue for assessing the alteration processes on Mars , 2016 .

[31]  L. Vaculíková,et al.  Different level of fluorescence in Raman spectra of montmorillonites , 2016 .

[32]  B. Jolliff,et al.  Understanding the Raman spectral features of phyllosilicates , 2015 .

[33]  Jean-Pierre Bibring,et al.  Widespread surface weathering on early Mars: A case for a warmer and wetter climate , 2015 .

[34]  Ashwin R. Vasavada,et al.  Curiosity's Mission of Exploration at Gale Crater, Mars , 2015 .

[35]  H. Edwards,et al.  Potential for analysis of carbonaceous matter on Mars using Raman spectroscopy , 2014 .

[36]  B. Ehlmann,et al.  Mineralogy of the Martian Surface , 2014 .

[37]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[38]  I. Němec,et al.  Microanalysis of clay‐based pigments in painted artworks by the means of Raman spectroscopy , 2013 .

[39]  Jean-Pierre Bibring,et al.  Subsurface water and clay mineral formation during the early history of Mars , 2011, Nature.

[40]  J. Head,et al.  Sequence and timing of conditions on early Mars , 2011 .

[41]  P. Lucey,et al.  A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[42]  John F. Mustard,et al.  Clay minerals in delta deposits and organic preservation potential on Mars , 2008 .

[43]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[44]  I. R. Lewis,et al.  Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line , 2001 .

[45]  R. Frost,et al.  Raman Spectroscopy of Nontronites , 2000 .

[46]  Ray L. Frost,et al.  The structure of the kaolinite minerals−a FT-Raman study , 1997, Clay Minerals.

[47]  E. Murad Identification of minor amounts of anatase in kaolins by Raman spectroscopy , 1997 .

[48]  V. Farmer Infrared spectroscopy in clay mineral studies , 1968, Clay Minerals.

[49]  J. Bishop,et al.  Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars , 2018, Nature Astronomy.

[50]  B. Ehlmann,et al.  Geochemical Consequences of Widespread Clay Mineral Formation in Mars’ Ancient Crust , 2013 .