Steady-state convection-diffusion problems
暂无分享,去创建一个
[1] D. N. De G. Allen,et al. RELAXATION METHODS APPLIED TO DETERMINE THE MOTION, IN TWO DIMENSIONS, OF A VISCOUS FLUID PAST A FIXED CYLINDER , 1955 .
[2] Lutz Tobiska,et al. Numerical Methods for Singularly Perturbed Differential Equations , 1996 .
[3] Volker John,et al. A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .
[4] Willy Dörfler,et al. Uniform A Priori Estimates for Singularly Perturbed Elliptic Equations in Multidimensions , 1999 .
[5] Tobias Knopp,et al. Stabilized finite element methods with shock capturing for advection–diffusion problems , 2002 .
[6] J. Cole,et al. Multiple Scale and Singular Perturbation Methods , 1996 .
[7] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[8] Giancarlo Sangalli. Quasi Optimality of the SUPG Method for the One-Dimensional Advection-Diffusion Problem , 2003, SIAM J. Numer. Anal..
[9] Endre Süli,et al. Stabilised hp-Finite Element Approximation of Partial Differential Equations with Nonnegative Characteristic Form , 2001, Computing.
[10] HANS-GäRG Roos,et al. A note on the conditioning of upwind schemes on Shishkin meshes , 1996 .
[11] A. Wathen,et al. On parameter choice and iterative convergence for stabilised discretisations of advection-diffusion problems , 1999 .
[12] Martin Stynes,et al. Finite Element Methods for Convection-Diffusion Problems using Exponential Splines on Triangles , 1998 .
[13] Hong Wang,et al. A summary of numerical methods for time-dependent advection-dominated partial differential equations , 2001 .
[14] T. Hughes,et al. MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .
[15] O. A. Ladyzhenskai︠a︡,et al. Linear and quasilinear elliptic equations , 1968 .
[16] Thomas Apel,et al. Anisotropic interpolation with applications to the finite element method , 1991, Computing.
[17] R. Bruce Kellogg,et al. Corner singularities and boundary layers in a simple convection–diffusion problem☆ , 2005 .
[18] Hans-Görg Roos,et al. The Discontinuous Galerkin Finite Element Method for Singularly Perturbed Problems , 2003 .
[19] I. Babuska,et al. A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .
[20] Lutz Tobiska,et al. A finite difference analysis of a streamline diffusion method on a Shishkin mesh , 2004, Numerical Algorithms.
[21] Martin Stynes,et al. EFFICIENT GENERATION OF ORIENTED MESHES FOR SOLVING CONVECTION-DIFFUSION PROBLEMS , 1997 .
[22] Torsten Linß,et al. The necessity of Shishkin decompositions , 2001, Appl. Math. Lett..
[23] Torsten Linß,et al. Defect correction on Shishkin-type meshes , 2001, Numerical Algorithms.
[24] R. Kellogg,et al. Analysis of some difference approximations for a singular perturbation problem without turning points , 1978 .
[25] JohnM . Miller,et al. Robust Computational Techniques for Boundary Layers , 2000 .
[26] Jens Markus Melenk,et al. hp-Finite Element Methods for Singular Perturbations , 2002 .
[27] Hans-Görg Roos,et al. Ten ways to generate the Il'in and related schemes , 1994 .
[28] G. I. Shishkin. Approximation of the solutions of singularly perturbed boundary-value problems with a parabolic boundary layer , 1991 .
[29] Natalia Kopteva,et al. A Robust Adaptive Method for a Quasi-Linear One-Dimensional Convection-Diffusion Problem , 2001, SIAM J. Numer. Anal..
[30] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[31] Hans-Görg Roos,et al. Interior penalty discontinuous approximations of convection–diffusion problems with parabolic layers , 2005, Numerische Mathematik.
[32] Guido Kanschat,et al. A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.
[33] Martin Stynes,et al. A singularly perturbed convection–diffusion problem in a half-plane , 2006 .
[34] Natalia Kopteva,et al. Error Expansion for an Upwind Scheme Applied to a Two-Dimensional Convection-Diffusion Problem , 2003, SIAM J. Numer. Anal..
[35] H. Elman,et al. Iterative methods for stabilized discrete convection-diffusion problems , 2000 .
[36] Giancarlo Sangalli,et al. A robust a posteriori estimator for the Residual-free Bubbles method applied to advection-diffusion problems , 2001, Numerische Mathematik.
[37] Claes Johnson,et al. Computational Differential Equations , 1996 .
[38] Torsten Linß,et al. Layer-adapted meshes for convection-diffusion problems , 2003 .
[39] Martin Stynes,et al. A hybrid difference scheme on a Shishkin mesh for linear convection-diffusion problems , 1999 .
[40] Endre Süli,et al. Residual-free bubbles for advection-diffusion problems: the general error analysis , 2000, Numerische Mathematik.
[41] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[42] Harold A. Buetow,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[43] Hans-Görg Roos,et al. A Priori Estimates for the Solution of Convection-Diffusion Problems and Interpolation on Shishkin Meshes , 1997 .
[44] Mary F. Wheeler,et al. A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[45] Tayfun E. Tezduyar,et al. Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements , 2004 .
[46] Torsten Linß,et al. Numerical methods on Shishkin meshes for linear convection-diffusion problems , 2001 .
[47] Alessandro Russo,et al. CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .
[48] Guohui Zhou,et al. How accurate is the streamline diffusion finite element method? , 1997, Math. Comput..
[49] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[50] J. Tinsley Oden,et al. A Posteriori Error Estimation , 2002 .
[51] A. M. Ilʹin,et al. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems , 1992 .
[52] Klaus Böhmer. Defect correction methods - theory and applications , 1984, Computing : Supplementum.
[53] Niall Madden,et al. Linear enhancements of the streamline diffusion method for convection-diffusion problems , 1996 .
[54] Riccardo Sacco,et al. A nonconforming exponentially fitted finite element method for two‐dimensional drift‐diffusion models in semiconductors , 1999 .
[55] Achi Brandt,et al. Inadequacy of first-order upwind difference schemes for some recirculating flows , 1991 .
[56] J.. A Posteriori Error Estimation , 2006 .
[57] J. J. Miller,et al. Fitted Numerical Methods for Singular Perturbation Problems , 1996 .
[58] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[59] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[60] Lutz Tobiska,et al. The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy , 2003, SIAM J. Numer. Anal..
[61] Torsten Linß. On a convection-diffusion problem with a weak layer , 2005, Appl. Math. Comput..
[62] R. B. Kellogg,et al. Differentiability properties of solutions of the equation -ε 2 δ u + ru = f ( x,y ) in a square , 1990 .
[63] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[64] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[65] Torsten Linß,et al. Asymptotic Analysis and Shishkin-Type Decomposition for an Elliptic Convection–Diffusion Problem , 2001 .
[66] Natalia Kopteva. Maximum Norm A Posteriori Error Estimates for a One-Dimensional Convection-Diffusion Problem , 2001, SIAM J. Numer. Anal..
[67] Torsten Liní. On a convection-diffusion problem with a weak layer , 2005 .
[68] Natalia Kopteva,et al. How accurate is the streamline-diffusion FEM inside characteristic (boundary and interior) layers? , 2004 .
[69] Rüdiger Verfürth,et al. Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..
[70] Klaus Böhmer,et al. Defect Correction Methods , 1984, Computing Supplementum.
[71] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .