Optical performance and metallic absorption in nanoplasmonic systems.

Optical metrics relating to metallic absorption in representative plasmonic systems are surveyed, with a view to developing heuristics for optimizing performance over a range of applications. We use the real part of the permittivity as the independent variable; consider strengths of particle resonances, resolving power of planar lenses, and guiding lengths of planar waveguides; and compare nearly-free-electron metals including Al, Cu, Ag, Au, Li, Na, and K. Whilst the imaginary part of metal permittivity has a strong damping effect, field distribution is equally important and thus factors including geometry, real permittivity and frequency must be considered when selecting a metal. Al performs well at low permittivities (e.g. sphere resonances, superlenses) whereas Au & Ag only perform well at very negative permittivities (shell and rod resonances, LRSPP). The alkali metals perform well overall but present engineering challenges.

[1]  R. Blaikie,et al.  Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs. , 2007, Optics express.

[2]  Pierre Berini,et al.  Figures of merit for surface plasmon waveguides. , 2006, Optics express.

[3]  S. Ramakrishna,et al.  Physics of negative refractive index materials , 2005 .

[4]  Yi Xiong,et al.  Far-field optical superlens. , 2007, Nano letters.

[5]  Peter B Catrysse,et al.  Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  V. Shalaev Optical negative-index metamaterials , 2007 .

[7]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[8]  Feng Wang,et al.  General properties of local plasmons in metal nanostructures. , 2006, Physical review letters.

[9]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[10]  S. Asano,et al.  Light scattering by a spheroidal particle. , 1975, Applied optics.

[11]  Garnett W. Bryant,et al.  Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects , 2006, SPIE Optics + Photonics.

[12]  J. Pendry,et al.  Imaging the near field , 2002, cond-mat/0207026.

[13]  Michael J. Ford,et al.  Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold , 2007 .

[14]  Zubin Jacob,et al.  Optical hyperlens: far-field imaging beyond the diffraction limit , 2006, SPIE NanoScience + Engineering.

[15]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[16]  Thomas Søndergaard,et al.  General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. , 2007, Optics express.

[17]  Dakrong Pissuwan,et al.  Therapeutic possibilities of plasmonically heated gold nanoparticles. , 2006, Trends in biotechnology.

[18]  Michael J. Ford,et al.  Tunable infrared absorption by metal nanoparticles: The case for gold rods and shells , 2008 .

[19]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[20]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[21]  Philip J Bones,et al.  Image fidelity for single-layer and multi-layer silver superlenses. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  R. Ruppin,et al.  Electromagnetic energy density in a dispersive and absorptive material , 2002 .

[23]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[24]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[25]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[26]  D. Schurig,et al.  The asymmetric lossy near-perfect lens , 2002 .

[27]  Richard J. Blaikie,et al.  Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography , 2006 .

[28]  R. Gans,et al.  Über die Form ultramikroskopischer Goldteilchen , 1912 .

[29]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[30]  E. Economou Surface Plasmons in Thin Films , 1969 .

[31]  William L Barnes,et al.  Surface plasmon – polariton length scales : a route to subwavelength optics , 2006 .

[32]  Pierre Berini,et al.  Figures of merit for 2D surface plasmon waveguides and application to metal stripes. , 2007, Optics express.

[33]  Paul Mulvaney,et al.  Gold nanorod extinction spectra , 2006 .

[34]  R. Blaikie,et al.  Super-resolution imaging through a planar silver layer. , 2005, Optics express.

[35]  H. Lezec,et al.  Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy , 2008 .

[36]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[37]  William L. Barnes,et al.  REVIEW ARTICLE: Surface plasmon polariton length scales: a route to sub-wavelength optics , 2006 .

[38]  Dakrong Pissuwan,et al.  A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods. , 2007, Nano letters.