QM/MM Methods for Crystalline Defects. Part 1: Locality of the Tight Binding Model

The tight binding model is a minimal electronic structure model for molecular modeling and simulation. We show that for a finite temperature model, the total energy in this model can be decomposed into site energies, that is, into contributions from each atomic site whose influence on their environment decays exponentially. This result lays the foundation for a rigorous analysis of QM/MM coupling schemes.

[1]  Christoph Ortner,et al.  QM/MM Methods for Crystalline Defects. Part 2: Consistent Energy and Force-Mixing , 2015, Multiscale Model. Simul..

[2]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[3]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[4]  Pierre-Louis Lions,et al.  The Mathematical Theory of Thermodynamic Limits: Thomas--Fermi Type Models , 1998 .

[5]  Pierre-Louis Lions,et al.  On the thermodynamic limit for Hartree–Fock type models , 2001 .

[6]  W. E,et al.  Electronic structure of smoothly deformed crystals: Cauchy‐born rule for the nonlinear tight‐binding model , 2010 .

[7]  G. M. Stocks,et al.  Order-N multiple scattering approach to electronic structure calculations. , 1995, Physical review letters.

[8]  Florian Theil,et al.  Justification of the Cauchy–Born Approximation of Elastodynamics , 2013 .

[9]  H. Yukawa On the Interaction of Elementary Particles I , 1955 .

[10]  Jianfeng Lu,et al.  The Electronic Structure of Smoothly Deformed Crystals: Wannier Functions and the Cauchy–Born Rule , 2011 .

[11]  E. Ferreira On the interaction of the elementary particles , 1961 .

[12]  Yamamoto,et al.  Tight-binding study of grain boundaries in Si: Energies and atomic structures of twist grain boundaries. , 1994, Physical review. B, Condensed matter.

[13]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[14]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[15]  E Weinan,et al.  The Kohn-Sham Equation for Deformed Crystals , 2012 .

[16]  D. Papaconstantopoulos,et al.  Handbook of the Band Structure of Elemental Solids , 1986 .

[17]  W. Kohn,et al.  Nearsightedness of electronic matter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Walter Kohn,et al.  Analytic Properties of Bloch Waves and Wannier Functions , 1959 .

[19]  Eric Cances,et al.  Non-perturbative embedding of local defects in crystalline materials , 2007, 0706.0794.

[20]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[21]  Eric Cances,et al.  A mathematical perspective on density functional perturbation theory , 2014 .

[22]  V. Ehrlacher,et al.  Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations , 2013, 1306.5334.

[23]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[24]  Christoph Ortner,et al.  Locality of the Thomas–Fermi–von Weizsäcker Equations , 2015, 1509.06753.

[25]  Martin Head-Gordon,et al.  Sparsity of the Density Matrix in Kohn-Sham Density Functional Theory and an Assessment of Linear System-Size Scaling Methods , 1997 .

[26]  M. Teter,et al.  Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. , 1994, Physical review. B, Condensed matter.

[27]  Rajiv K. Kalia,et al.  Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers , 2001 .

[28]  Vanderbilt,et al.  Structure, Barriers, and Relaxation Mechanisms of Kinks in the 90 degrees Partial Dislocation in Silicon. , 1996, Physical review letters.

[29]  P. Lions,et al.  The Energy of Some Microscopic Stochastic Lattices , 2007 .

[30]  Mathieu Lewin,et al.  The Dielectric Permittivity of Crystals in the Reduced Hartree–Fock Approximation , 2009, 0903.1944.

[31]  S. Lahbabi The Reduced Hartree–Fock Model for Short-Range Quantum Crystals with Nonlocal Defects , 2013, 1303.1165.

[32]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[33]  Furio Ercolessi,et al.  Lecture notes on Tight-Binding Molecular Dynamics, and Tight-Binding justication of classical potentials , 2010 .

[34]  M C Payne,et al.  "Learn on the fly": a hybrid classical and quantum-mechanical molecular dynamics simulation. , 2004, Physical review letters.

[35]  Mike C. Payne,et al.  Multiscale hybrid simulation methods for material systems , 2005 .

[36]  W. E,et al.  The Elastic Continuum Limit of the Tight Binding Model* , 2007 .

[37]  L. Thomas,et al.  Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators , 1973 .

[38]  Noam Bernstein,et al.  Hybrid atomistic simulation methods for materials systems , 2009 .

[39]  David R. Bowler,et al.  Tight-binding modelling of materials , 1997 .

[40]  M. Finnis,et al.  Interatomic Forces in Condensed Matter , 2003 .

[41]  E Weinan,et al.  Pole-Based approximation of the Fermi-Dirac function , 2009, 0906.1319.

[42]  D. Truhlar,et al.  Quantum mechanical methods for enzyme kinetics. , 2003, Annual review of physical chemistry.

[43]  Sohrab Ismail-Beigi,et al.  LOCALITY OF THE DENSITY MATRIX IN METALS, SEMICONDUCTORS, AND INSULATORS , 1999 .

[44]  Walter Kohn Analytic Properties of Bloch Waves and Wannier Functions , 1966 .

[45]  Mathieu Lewin,et al.  Mean-field models for disordered crystals , 2012, 1203.0402.

[46]  V. Ehrlacher,et al.  Local Defects are Always Neutral in the Thomas–Fermi–von Weiszäcker Theory of Crystals , 2010, 1007.2603.

[47]  E. Lieb,et al.  The Thomas-Fermi theory of atoms, molecules and solids , 1977 .

[48]  Christoph Ortner,et al.  Atomistic-to-continuum coupling , 2013, Acta Numerica.

[49]  Mathieu Lewin,et al.  A New Approach to the Modeling of Local Defects in Crystals: The Reduced Hartree-Fock Case , 2007, math-ph/0702071.

[50]  P. Gumbsch,et al.  Low-speed fracture instabilities in a brittle crystal , 2008, Nature.

[51]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[52]  Goedecker,et al.  Integral representation of the Fermi distribution and its applications in electronic-structure calculations. , 1993, Physical review. B, Condensed matter.

[53]  Vikram Gavini,et al.  Higher-order adaptive finite-element methods for Kohn-Sham density functional theory , 2012, J. Comput. Phys..

[54]  Michele Benzi,et al.  Decay Properties of Spectral Projectors with Applications to Electronic Structure , 2012, SIAM Rev..

[55]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[56]  Claude Le Bris,et al.  MATHEMATICAL MODELING OF POINT DEFECTS IN MATERIALS SCIENCE , 2013 .

[57]  Wang,et al.  Tight-binding molecular-dynamics study of defects in silicon. , 1991, Physical Review Letters.

[58]  Jingrun Chen,et al.  Analysis of the divide-and-conquer method for electronic structure calculations , 2014, Math. Comput..

[59]  Kai-Ming Ho,et al.  First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo , 1983 .