The Role of Parametric Instabilities in Turbulence Generation and Proton Heating: Hybrid Simulations of Parallel-propagating Alfvén Waves

Large-amplitude Alfvén waves tend to be unstable to parametric instabilities that result in a decay process of the initial wave into different daughter waves depending upon the amplitude of the fluctuations and the plasma beta. The propagation angle with respect to the mean magnetic field of the daughter waves plays an important role in determining the type of decay. In this paper, we revisit this problem by means of multidimensional hybrid simulations. In particular, we study the decay and the subsequent nonlinear evolution of large-amplitude Alfvén waves by investigating the saturation mechanism of the instability and its final nonlinear state reached for different wave amplitudes and plasma beta conditions. As opposed to one-dimensional simulations where the Decay instability is suppressed for increasing plasma beta values, we find that the decay process in multidimensions persists at large values of the plasma beta via the filamentation/magnetosonic decay instabilities. In general, the decay process acts as a trigger both to develop a perpendicular turbulent cascade and to enhance mean field-aligned wave–particle interactions. We find indeed that the saturated state is characterized by a turbulent plasma displaying a field-aligned beam at the Alfvén speed and increased temperatures that we ascribe to the Landau resonance and pitch-angle scattering in phase space.

[1]  Christopher H. K. Chen,et al.  Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence. , 2020, Physical review letters.

[2]  M. Velli,et al.  Alfvénic fluctuations in the solar wind: nonlinearities and pressure anisotropy effects , 2019, Plasma Physics and Controlled Fusion.

[3]  L. Franci,et al.  Kinetic Plasma Turbulence: Recent Insights and Open Questions From 3D3V Simulations , 2019, Front. Astron. Space Sci..

[4]  F. Malara,et al.  Parametric Instability in Two-dimensional Alfvénic Turbulence , 2019, The Astrophysical Journal.

[5]  T. Yokoyama,et al.  Three-dimensional Simulation of the Fast Solar Wind Driven by Compressible Magnetohydrodynamic Turbulence , 2019, The Astrophysical Journal.

[6]  U. Motschmann,et al.  Multi-channel coupling of decay instability in three-dimensional low-beta plasma , 2019, Annales Geophysicae.

[7]  G. Howes,et al.  Evidence for electron Landau damping in space plasma turbulence , 2018, Nature Communications.

[8]  U. Motschmann,et al.  On heating of solar wind protons by the parametric decay of large-amplitude Alfvén waves , 2018, Annales Geophysicae.

[9]  M. Velli,et al.  Parametric Decay and the Origin of the Low-frequency Alfvénic Spectrum of the Solar Wind , 2018, The Astrophysical Journal.

[10]  B. Chandran Parametric Instability, Inverse Cascade, and the 1/f Range of Solar-Wind Turbulence. , 2017, Journal of plasma physics.

[11]  L. Franci,et al.  Three-dimensional simulations of solar wind turbulence with the hybrid code CAMELIA , 2017, 1712.03930.

[12]  H. Isliker,et al.  Synergy of Stochastic and Systematic Energization of Plasmas during Turbulent Reconnection , 2017, 1712.03517.

[13]  M. Velli,et al.  The Parametric Instability of Alfvén Waves: Effects of Temperature Anisotropy , 2017, 1711.06371.

[14]  H. Isliker,et al.  Fractional Transport in Strongly Turbulent Plasmas. , 2017, Physical review letters.

[15]  A. Banon Navarro,et al.  Fully Kinetic versus Reduced-kinetic Modeling of Collisionless Plasma Turbulence , 2017, 1706.02652.

[16]  S. Boldyrev,et al.  Nature of Kinetic Scale Turbulence in the Earth's Magnetosheath , 2016, 1705.08558.

[17]  C. H. Chen,et al.  Recent progress in astrophysical plasma turbulence from solar wind observations , 2016, Journal of Plasma Physics.

[18]  L. Franci,et al.  PLASMA BETA DEPENDENCE OF THE ION-SCALE SPECTRAL BREAK OF SOLAR WIND TURBULENCE: HIGH-RESOLUTION 2D HYBRID SIMULATIONS , 2016, 1610.05158.

[19]  L. Franci,et al.  SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS , 2015, 1503.05457.

[20]  L. Ofman,et al.  Relative drifts and temperature anisotropies of protons and α particles in the expanding solar wind: 2.5D hybrid simulations , 2014, 1410.3358.

[21]  M. Velli,et al.  Parametric decay of parallel and oblique Alfvén waves in the expanding solar wind , 2014, Journal of Plasma Physics.

[22]  S. Cranmer ENSEMBLE SIMULATIONS OF PROTON HEATING IN THE SOLAR WIND VIA TURBULENCE AND ION CYCLOTRON RESONANCE , 2014, 1406.0678.

[23]  M. Velli,et al.  Parametric decay of radial Alfvén waves in the expanding accelerating solar wind , 2013 .

[24]  Q. Lu,et al.  Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma , 2013 .

[25]  E. Quataert,et al.  THE EFFICIENCY OF SECOND-ORDER FERMI ACCELERATION BY WEAKLY COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE , 2013, 1307.0021.

[26]  S. Boldyrev,et al.  Nature of subproton scale turbulence in the solar wind. , 2013, Physical review letters.

[27]  M. Velli,et al.  Proton thermal energetics in the solar wind: Helios reloaded , 2013 .

[28]  S. Boldyrev,et al.  STATISTICAL ANALYSIS OF CURRENT SHEETS IN THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC TURBULENCE , 2013, 1302.1460.

[29]  H. Karimabadi,et al.  Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas , 2013 .

[30]  T. Hada,et al.  Nonlinear dissipation of circularly polarized Alfvén waves due to the beam-induced obliquely propagating waves , 2012 .

[31]  U. Motschmann,et al.  Parametric decay of oblique Alfvén waves in two-dimensional hybrid simulations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  E. Quataert,et al.  RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE , 2012, 1204.0155.

[33]  P. Dmitruk,et al.  Magnetic reconnection as an element of turbulence , 2011 .

[34]  M. Velli,et al.  Who Needs Turbulence? , 2011 .

[35]  W. Dorland,et al.  Gyrokinetic simulations of solar wind turbulence from ion to electron scales. , 2011, Physical review letters.

[36]  P. Canu,et al.  Three dimensional anisotropic κ spectra of turbulence at subproton scales in the solar wind. , 2010, Physical review letters.

[37]  M. Velli,et al.  Kinetics of parametric instabilities of Alfvén waves: Evolution of ion distribution functions , 2010 .

[38]  E. Quataert,et al.  PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVÉN-WAVE TURBULENCE IN THE SOLAR WIND , 2010, 1001.2069.

[39]  Charles W. Smith,et al.  Short‐wavelength turbulence in the solar wind: Linear theory of whistler and kinetic Alfvén fluctuations , 2009 .

[40]  E. Quataert,et al.  A MAGNETIC RECONNECTION MECHANISM FOR ION ACCELERATION AND ABUNDANCE ENHANCEMENTS IN IMPULSIVE FLARES , 2009 .

[41]  S. Schwartz,et al.  Universality of solar-wind turbulent spectrum from MHD to electron scales. , 2009, Physical review letters.

[42]  M. Velli,et al.  TURBULENCE IN THE SUB-ALFVÉNIC SOLAR WIND DRIVEN BY REFLECTION OF LOW-FREQUENCY ALFVÉN WAVES , 2009, 0905.2618.

[43]  E. Marsch,et al.  Proton core heating and beam formation via parametrically unstable Alfvén-cyclotron waves. , 2008, Physical review letters.

[44]  W. Matthaeus,et al.  Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma , 2007, 0801.0107.

[45]  R. Erdélyi,et al.  Are There Alfvén Waves in the Solar Atmosphere? , 2007, Science.

[46]  T. Hada,et al.  Consequences of finite ion temperature effects on parametric instabilities of circularly polarized Alfvén waves , 2007 .

[47]  E. Marsch Kinetic Physics of the Solar Corona and Solar Wind , 2006 .

[48]  William H. Matthaeus,et al.  Structure of the electromagnetic field in three-dimensional Hall magnetohydrodynamic turbulence , 2006 .

[49]  T. Horbury,et al.  Spacecraft observations of solar wind turbulence: an overview , 2005 .

[50]  V. Carbone,et al.  The Solar Wind as a Turbulence Laboratory , 2005 .

[51]  P. Dmitruk,et al.  Test Particle Energization by Current Sheets and Nonuniform Fields in Magnetohydrodynamic Turbulence , 2004 .

[52]  P. Isenberg,et al.  Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction , 2002 .

[53]  J. Richardson,et al.  Heating of the low‐latitude solar wind by dissipation of turbulent magnetic fluctuations , 2001 .

[54]  R. White,et al.  On Resonant Heating Below the Cyclotron Frequency , 2001 .

[55]  Marco Velli,et al.  Parametric decay of circularly polarized Alfvén waves: Multidimensional simulations in periodic and open domains , 2001 .

[56]  B. Bavassano,et al.  On the evolution of outward and inward Alfvénic fluctuations in the polar wind , 2000 .

[57]  F. Malara,et al.  Nonlinear evolution of parametric instability of a large-amplitude nonmonochromatic Alfvén wave , 2000 .

[58]  M. Velli,et al.  Parametric instability of a large-amplitude nonmonochromatic Alfvén wave , 1996 .

[59]  S. Ghosh,et al.  Nonlinear evolution of a large‐amplitude circularly polarized Alfvén wave: High beta , 1994 .

[60]  A. Matthews,et al.  Current Advance Method and Cyclic Leapfrog for 2D Multispecies Hybrid Plasma Simulations , 1994 .

[61]  Venku Jayanti,et al.  On the dispersion relations for parametric instabilities of parallel‐propagating Alfvén waves , 1993 .

[62]  M. Goldstein,et al.  Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands , 1992 .

[63]  M. Goldstein,et al.  Parametric instabilities of circularly polarized large-amplitude dispersive Alfvén waves: excitation of obliquely-propagating daughter and side-band waves , 1991, Journal of Plasma Physics.

[64]  Myoungkyu Lee,et al.  Filamentation instability of large-amplitude Alfven waves , 1988 .

[65]  H. K. Wong,et al.  Parametric instabilities of circularly polarized Alfvén waves including dispersion , 1986 .

[66]  Tohru Hada,et al.  Decay instability of finite-amplitude circularly polarized Alfven waves - A numerical simulation of stimulated Brillouin scattering , 1986 .

[67]  J. Sakai,et al.  Modulational instability of finite amplitude dispersive Alfvén waves , 1983 .

[68]  F. Mariani,et al.  Radial evolution of power spectra of interplanetary Alfvénic turbulence , 1981 .

[69]  N. Derby Modulational instability of finite-amplitude, circularly polarized Alfven waves , 1978 .

[70]  M. Goldstein,et al.  An instability of finite amplitude circularly polarized Alfven waves. [in solar wind and corona , 1978 .

[71]  L. Fisk The acceleration of energetic particles in the interplanetary medium by transit-time damping , 1976 .

[72]  L. Davis,et al.  Large-Amplitude Alfvn Waves in the Interplanetary Medium' , 1971 .

[73]  P. Coleman Wave-like phenomena in the interplanetary plasma Mariner 2. , 1967 .

[74]  B. Sonnerup,et al.  Large Amplitude Whistler Waves in a Hot Collision‐Free Plasma , 1967 .

[75]  Charles F. Kennel,et al.  Velocity Space Diffusion from Weak Plasma Turbulence in a Magnetic Field , 1966 .