Internal Note Higgs Fiducial Cross Section Chapter for YR 4 Editors :

Over the past years fiducial measurements, both di↵erential and total, became standard practice for characterizing Standard Model processes at the LHC experiments. The advantage of quoting such a result over inclusive cross section measurements lies in the almost complete factorization of experimental and theoretical uncertainty sources. This chapter summarizes the state-of-the-art of predicting fiducial cross sections in the Standard Model and beyond the Standard Model e↵ects. In addition the experimental aspects and challenges of quoting fiducial measurements are discussed.

[1]  K. Melnikov,et al.  Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD , 2015, 1508.02684.

[2]  D. Rathlev,et al.  W+W− production at the LHC: fiducial cross sections and distributions in NNLO QCD , 2015, 1507.06257.

[3]  Alan D. Martin,et al.  Parton distributions in the LHC era: MMHT 2014 PDFs , 2014, The European physical journal. C, Particles and fields.

[4]  J. Ellis,et al.  Complete Higgs sector constraints on dimension-6 operators , 2014, 1404.3667.

[5]  B. Fuks,et al.  Phenomenology of the Higgs effective Lagrangian via FeynRules , 2013, 1310.5150.

[6]  Adam Martin,et al.  Probing top-partners in Higgs+jets , 2013, 1308.4771.

[7]  K. Melnikov,et al.  Constraining the Higgs boson width with ZZ production at the LHC , 2013, 1307.4935.

[8]  M. Grazzini,et al.  Heavy-quark mass effects in Higgs boson production at the LHC , 2013, 1306.4581.

[9]  J. Ellis,et al.  Associated production evidence against Higgs impostors and anomalous couplings , 2013, 1303.0208.

[10]  S. Platzer,et al.  Controlling inclusive cross sections in parton shower + matrix element merging , 2012, 1211.5467.

[11]  R. Frederix,et al.  Merging meets matching in MC@NLO , 2012, 1209.6215.

[12]  M. Schonherr,et al.  Uncertainties in next-to-leading order plus parton shower matched simulations of inclusive jet and dijet production , 2012, 1208.2815.

[13]  C. Grojean,et al.  NSUSY fits , 2012, 1207.7355.

[14]  G. Passarino,et al.  Inadequacy of zero-width approximation for a light Higgs boson signal , 2012, 1305.2092.

[15]  D. Florian,et al.  Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC , 2011, 1109.2109.

[16]  J. Campbell,et al.  Gluon-gluon contributions to W+W− production and Higgs interference effects , 2011, 1107.5569.

[17]  T. Han,et al.  New physics signals in longitudinal gauge boson scattering at the LHC , 2009, 0911.3656.

[18]  K. Mawatari,et al.  Jet angular correlation in vector-boson fusion processes at hadron colliders , 2009, 0905.4314.

[19]  D. Zeppenfeld,et al.  Observing an invisible Higgs boson , 2000 .

[20]  M. Seymour,et al.  A general algorithm for calculating jet cross sections in NLO QCD , 1996, hep-ph/9605323.

[21]  M. Seymour,et al.  The dipole formalism for the calculation of QCD jet cross sections at next-to-leading order , 1996, hep-ph/9602277.

[22]  A. Hoecker,et al.  SVD APPROACH TO DATA UNFOLDING , 1995, hep-ph/9509307.

[23]  G. D'Agostini,et al.  A Multidimensional unfolding method based on Bayes' theorem , 1995 .

[24]  M. Spira,et al.  Low-energy theorems in Higgs physics , 1995, hep-ph/9505225.

[25]  D. Graudenz,et al.  HIGGS BOSON PRODUCTION AT THE LHC , 1995, hep-ph/9504378.

[26]  U. Baur,et al.  Higgs Boson Production at Large Transverse Momentum in Hadronic Collisions , 1990 .

[27]  S. Dawson The Effective W Approximation , 1985 .

[28]  Jürgen R. Reuter,et al.  High-Energy Vector Boson Scattering after the Higgs Discovery , 2014 .

[29]  W. Marsden I and J , 2012 .

[30]  J. Andersen,et al.  A New Framework for Multijet Predictions and its application to Higgs Boson production at the LHC , 2008 .

[31]  PhysicsDepartment,et al.  A SURVEY OF UNFOLDING METHODS FOR PARTICLE PHYSICS , 2002 .

[32]  A. Vainshtein,et al.  Low-Energy Theorems for Higgs Boson Couplings to Photons , 1979 .