An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms
暂无分享,去创建一个
[1] L. Qi,et al. Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..
[2] Kung-Ching Chang,et al. Perron-Frobenius theorem for nonnegative tensors , 2008 .
[3] L. Qi,et al. Strictly nonnegative tensors and nonnegative tensor partition , 2011, Science China Mathematics.
[4] Derek K. Jones,et al. Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .
[5] M. A. Hasan,et al. A procedure for the positive definiteness of forms of even order , 1996, IEEE Trans. Autom. Control..
[6] Yiju Wang,et al. Criteria for strong H-tensors , 2016 .
[7] Qingzhi Yang,et al. Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..
[8] L. Qi,et al. Positive Definiteness and Semi-Definiteness of Even Order Symmetric Cauchy Tensors , 2014, 1405.6363.
[9] A. Berman,et al. Some properties of strong H-tensors and general H-tensors , 2015 .
[10] Fei Wang,et al. Comments on "Explicit criterion for the positive definiteness of a general quartic form" , 2005, IEEE Trans. Autom. Control..
[11] S. Gaubert,et al. Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.
[12] Yan Zhu,et al. Criterions for the positive definiteness of real supersymmetric tensors , 2014, J. Comput. Appl. Math..
[13] N. Bose,et al. General procedure for multivariable polynomial positivity test with control applications , 1976 .
[14] Liqun Qi,et al. M-Tensors and Some Applications , 2014, SIAM J. Matrix Anal. Appl..
[15] Baba C. Vemuri,et al. Regularized positive-definite fourth order tensor field estimation from DW-MRI , 2009, NeuroImage.
[16] Yao-tang Li,et al. On the iterative criterion for strong $$\mathcal {H}$$H-tensors , 2017 .
[17] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[18] P. Basser,et al. Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.
[19] Liqun Qi,et al. Necessary and sufficient conditions for copositive tensors , 2013, 1302.6084.
[20] L. Qi,et al. Finding the Spectral Radius of a Nonnegative Tensor , 2011, 1111.2138.
[21] Maher Moakher. On the Averaging of Symmetric Positive-Definite Tensors , 2006 .
[22] Andrzej Cichocki,et al. Nonnegative Matrix and Tensor Factorization T , 2007 .
[23] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[24] Liqun Qi,et al. D-eigenvalues of diffusion kurtosis tensors , 2008 .
[25] Yiju Wang,et al. Nonsingular $H$-tensor and its criteria , 2016 .
[26] L. Qi,et al. M-tensors and nonsingular M-tensors , 2013, 1307.7333.
[27] M.A. Hulsen. A sufficient condition for a positive definite configuration tensor in differential models , 1990 .
[28] Fei Wang,et al. An Eigenvalue Method for Testing Positive Definiteness of a Multivariate Form , 2008, IEEE Transactions on Automatic Control.