Direct measurement of the van der Waals interaction between two Rydberg atoms.

We report the direct measurement of the van der Waals interaction between two isolated, single Rydberg atoms separated by a controlled distance of a few micrometers. Working in a regime where the single-atom Rabi frequency for excitation to the Rydberg state is comparable to the interaction, we observe partial Rydberg blockade, whereby the time-dependent populations of the various two-atom states exhibit coherent oscillations with several frequencies. Quantitative comparison of the data with a simple model based on the optical Bloch equations allows us to extract the van der Waals energy, and observe its characteristic C6/R6 dependence. The measured C6 coefficients agree well with ab initio calculations, and we observe their dramatic increase with the principal quantum number n of the Rydberg state.

[1]  Dipole blockade in a cold Rydberg atomic sample [Invited] , 2010, 1006.0742.

[2]  David J. Wineland,et al.  Complete Methods Set for Scalable Ion Trap Quantum Information Processing , 2009, Science.

[3]  R. Grimm,et al.  Optical dipole traps for neutral atoms , 1999, physics/9902072.

[4]  M. Weidemüller,et al.  Mechanical effect of van der waals interactions observed in real time in an ultracold Rydberg gas. , 2006, Physical review letters.

[5]  Vlatko Vedral,et al.  Quantifying entanglement in macroscopic systems , 2008, Nature.

[6]  H. B. van Linden van den Heuvell,et al.  Simultaneous position and state measurement of Rydberg atoms , 2006, quant-ph/0602183.

[7]  Meschede,et al.  Measuring the van der Waals forces between a Rydberg atom and a metallic surface. , 1988, Physical review. A, General physics.

[8]  Wolfgang Ertmer,et al.  Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits. , 2002 .

[9]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[10]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[11]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[12]  Nicolas Schlosser Etude et réalisation de micro-pièges dipolaires optiques pour atomes neutres , 2001 .

[13]  P. C. Hiemenz,et al.  Principles of colloid and surface chemistry , 1977 .

[14]  Dieter Meschede,et al.  Deterministic Delivery of a Single Atom , 2001, Science.

[15]  G. Reymond Etudes expérimentales d'atomes dans un piège dipolaire microscopique , 2002 .

[16]  T. Liebisch,et al.  Level shifts of rubidium Rydberg states due to binary interactions , 2007 .

[17]  Y. O. Dudin,et al.  Strongly Interacting Rydberg Excitations of a Cold Atomic Gas , 2012, Science.

[18]  D. Kleppner,et al.  Stark structure of the Rydberg states of alkali-metal atoms , 1979 .

[19]  K. Singer,et al.  Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes , 2005 .

[20]  Igor Protsenko,et al.  Sub-poissonian loading of single atoms in a microscopic dipole trap , 2001, Nature.

[21]  R. Heidemann,et al.  Rydberg excitation of Bose-Einstein condensates. , 2007, Physical review letters.

[22]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[23]  F. Melde,et al.  Ueber die Erregung stehender Wellen eines fadenförmigen Körpers , 1860 .

[24]  Hinds,et al.  Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. , 1992, Physical review letters.

[25]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[26]  P. Zoller,et al.  Mesoscopic Rydberg gate based on electromagnetically induced transparency. , 2008, Physical review letters.

[27]  P. Gould,et al.  Local blockade of Rydberg excitation in an ultracold gas. , 2004, Physical review letters.

[28]  Alpha Gaëtan Intrication de deux atomes en utilisant le blocage de Rydberg , 2009 .

[29]  C. Wieman,et al.  Loading an optical dipole trap , 2000 .

[30]  M D Barrett,et al.  All-optical formation of an atomic Bose-Einstein condensate. , 2001, Physical review letters.

[31]  T. Pfau,et al.  Evidence for strong van der Waals type Rydberg-Rydberg interaction in a thermal vapor. , 2012, Physical review letters.

[32]  Analysis of a single-atom dipole trap , 2005, quant-ph/0511232.

[33]  M. Saffman,et al.  Atomic Fock state preparation using Rydberg blockade. , 2013, Physical review letters.

[34]  Thomas G. Walker,et al.  Demonstration of a neutral atom controlled-NOT quantum gate. , 2009, Physical review letters.

[35]  I. Lesanovsky Many-body spin interactions and the ground state of a dense Rydberg lattice gas. , 2010, Physical review letters.

[36]  M. Mudrich,et al.  Very long storage times and evaporative cooling of cesium atoms in a quasielectrostatic dipole trap , 2000, physics/0003075.

[37]  J. Pritchard,et al.  Storage and control of optical photons using Rydberg polaritons. , 2012, Physical review letters.

[38]  A. Aspect,et al.  Measurement of the atom-wall interaction: from London to Casimir-Polder , 2002 .

[39]  Antoine Browaeys,et al.  Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator , 2004 .

[40]  D. B. Tretyakov,et al.  Deterministic single-atom excitation via adiabatic passage and Rydberg blockade , 2011, 1102.5223.

[41]  T. Lahaye,et al.  Measurement of the van der Waals interaction between two Rydberg atoms , 2014 .

[42]  D. Weiss,et al.  Imaging single atoms in a three dimensional array , 2007 .

[43]  William D. Phillips,et al.  Controlled exchange interaction between pairs of neutral atoms in an optical lattice , 2007, Nature.

[44]  G. Rempe,et al.  Lossless state detection of single neutral atoms. , 2010, Physical review letters.

[45]  P. Berman,et al.  Atom counting statistics in ensembles of interacting Rydberg atoms. , 2005, Physical review letters.

[46]  R. Bernstein,et al.  Dissociation Energy and Long‐Range Potential of Diatomic Molecules from Vibrational Spacings of Higher Levels , 1970 .

[47]  P. Grangier,et al.  Quantum interference between two single photons emitted by independently trapped atoms , 2006, Nature.

[48]  T. Pfau,et al.  Highly resolved measurements of Stark-tuned Förster resonances between Rydberg atoms. , 2012, Physical review letters.

[49]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[50]  P. Grangier,et al.  Fast Quantum State Control of a Single Trapped Neutral Atom , 2006, quant-ph/0609134.

[51]  A. Browaeys,et al.  Light-assisted collisions between a few cold atoms in a microscopic dipole trap , 2011, 1107.5781.

[52]  E. Arimondo,et al.  Rydberg excitations in Bose-Einstein condensates in quasi-one-dimensional potentials and optical lattices. , 2011, Physical review letters.

[53]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[54]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[55]  J. Beugnon Contrôle de l'état interne d'un atome unique piégé et expériences d'interférences à deux photons : vers l'information quantique avec des atomes neutres , 2007 .

[56]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[57]  P Grangier,et al.  Controlled Single-Photon Emission from a Single Trapped Two-Level Atom , 2005, Science.

[58]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[59]  C. Theodosiou,et al.  Lifetimes of alkali-metal—atom Rydberg states , 1984 .

[60]  D. B. Tretyakov,et al.  Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS , nP , and nD alkali-metal atoms with n≤80 , 2009 .

[61]  André Clairon,et al.  High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain , 1999 .

[62]  I. Bloch,et al.  Observation of spatially ordered structures in a two-dimensional Rydberg gas , 2012, Nature.

[63]  J. Petrus,et al.  Enhancement of Rydberg atom interactions using ac Stark shifts. , 2006, Physical review letters.

[64]  D. Kleppner,et al.  Erratum: Measurements of lifetimes of sodium Rydberg states in a cooled environment , 1981 .

[65]  C. Gabbanini,et al.  Photoionization cross section measurement in a Rb vapor cell trap , 1997 .

[66]  T. Carroll,et al.  Angular dependence of the dipole-dipole interaction in a nearly one-dimensional sample of Rydberg atoms. , 2004, Physical review letters.

[67]  M. Saffman,et al.  Observation of Rydberg blockade between two atoms , 2008, 0805.0758.

[68]  MANIPULATION D'ATOMES DANS DES PIÈGES DIPOLAIRES MICROSCOPIQUES ET ÉMISSION CONTRÔLÉE DE PHOTONS PAR UN ATOME UNIQUE , 2005 .

[69]  D. Comparat,et al.  Electric-field induced dipole blockade with Rydberg atoms. , 2007, Physical review letters.

[70]  P. Zoller,et al.  Entanglement of Atoms via Cold Controlled Collisions , 1998, quant-ph/9810087.

[71]  P Grangier,et al.  Collisional blockade in microscopic optical dipole traps. , 2002, Physical review letters.

[72]  C. Regal,et al.  Cooling a Single Atom in an Optical Tweezer to Its Quantum Ground State , 2012, 1209.2087.

[73]  M. Weissbluth Atoms and Molecules , 1978 .

[74]  P Grangier,et al.  Entanglement of two individual neutral atoms using Rydberg blockade. , 2009, Physical review letters.

[75]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[76]  W. Zurek The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .

[77]  Thomas G. Walker,et al.  Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions. , 2007, Physical review letters.

[78]  D Meschede,et al.  Coherence properties and quantum state transportation in an optical conveyor belt. , 2003, Physical review letters.

[79]  Nonadiabatic motional effects and dissipative blockade for Rydberg atoms excited from optical lattices or microtraps. , 2013, Physical review letters.

[80]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[81]  H. Weinfurter,et al.  Observation of entanglement of a single photon with a trapped atom. , 2006, Physical review letters.

[82]  J. Pritchard,et al.  Nonlinear optics using cold Rydberg atoms , 2012, 1205.4890.

[83]  M. Saffman,et al.  Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array , 2013, 1305.6102.

[84]  D. Steck Rubidium 85 D Line Data , 2008 .

[85]  D. B. Tretyakov,et al.  Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions , 2011, 1110.0576.

[86]  K. Bonin,et al.  Two-photon electric-dipole selection rules , 1984 .

[87]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[88]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[89]  H. Weimer,et al.  Universal scaling in a strongly interacting Rydberg gas , 2009, 0902.4523.

[90]  A. Browaeys,et al.  Free-space lossless state detection of a single trapped atom. , 2010, Physical review letters.

[91]  H. Büchler,et al.  Coupling a single electron to a Bose–Einstein condensate , 2013, Nature.

[92]  Lukin,et al.  Fast quantum gates for neutral atoms , 2000, Physical review letters.

[93]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[94]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[95]  W. Wing,et al.  ACCURATE CALCULATION OF DYNAMIC STARK SHIFTS AND DEPOPULATION RATES OF RYDBERG ENERGY LEVELS INDUCED BY BLACKBODY RADIATION. HYDROGEN, HELIUM, AND ALKALI-METAL ATOMS , 1981 .

[96]  W. Li,et al.  Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series , 2003 .

[97]  K. Burnett Atom-Photon Interactions Basic Processes and Applications , 1992 .

[98]  Chen Zhang,et al.  Model-potential calculation of lifetimes of Rydberg states of alkali atoms , 1990 .

[99]  A. Lance,et al.  Diffraction limited optics for single atom manipulation , 2006, quant-ph/0610071.

[100]  A. Lance,et al.  Energy distribution and cooling of a single atom in an optical tweezer , 2008, 0805.3510.

[101]  D. Comparat,et al.  Observation of collective excitation of two individual atoms in the Rydberg blockade regime , 2008, 0810.2960.

[102]  Y. Jamil,et al.  Rb nf quantum defects from millimeter-wave spectroscopy of cold {sup 85}Rb Rydberg atoms , 2006 .

[103]  J. Cirac,et al.  Dipole blockade and quantum information processing in mesoscopic atomic ensembles. , 2000, Physical review letters.

[104]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[105]  I. Bloch Quantum coherence and entanglement with ultracold atoms in optical lattices , 2008, Nature.

[106]  Interactions entre atomes de rubidium dans des états de Rydberg et intrication par blocage de Rydberg , 2011 .

[107]  S. Kokkelmans,et al.  Feshbach resonances in ultracold gases , 2014, 1401.2945.

[108]  M. McGovern,et al.  Near-deterministic preparation of a single atom in an optical microtrap , 2010 .

[109]  R. J. C. Spreeuw,et al.  Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip , 2010 .