Design of 980 nm-Pumped Waveguide Laser for Continuous Wave Operation in Ion Implanted ${\rm Er}{:}{\rm LiNbO}_{3}$

Embedded channel waveguides formed on a z-cut erbium-doped lithium niobate (Er:LiNbO3) substrate by a high-energy ion implantation technique are first described. A detailed theoretical design of a waveguide laser for continuous wave operation is then discussed, taking into account realistic input parameters and measured data. To simulate waveguide modes and to predict laser outputs from our fabricated waveguide sample, a numerical tool is developed in FORTRAN based on the full vectorial finite element method. Using the developed tools, the waveguide dimension is optimized, ensuring single-mode operation at both pump (980 nm) and laser (1531 nm) wavelengths. Finally, laser outputs as a function of various waveguide parameters are analyzed. The proposed analysis allows the effective optimization of the ion-implanted waveguide laser in Er:LiNbO3.

[1]  G. G. Bentini,et al.  Refractive index tailoring in congruent Lithium Niobate by ion implantation , 2010 .

[2]  Feng Chen,et al.  Carbon ion implanted Nd:MgO:LiNbO(3) optical channel waveguides: an intermediate step between light and heavy ion implanted waveguides. , 2010, Optics express.

[3]  Z. Sitar,et al.  Free-Standing Lithium Niobate Microring Resonators for Hybrid Integrated Optics , 2010, IEEE Photonics Technology Letters.

[4]  S. Faralli,et al.  Design of optically pumped Er3+ doped silicon-on-insulator slot waveguide lasers , 2009, 2009 IEEE LEOS Annual Meeting Conference Proceedings.

[5]  Peter Günter,et al.  Photonic crystal structures in ion-sliced lithium niobate thin films. , 2009, Optics express.

[6]  G. G. Bentini,et al.  Defect engineering and micromachining of Lithium Niobate by ion implantation , 2009 .

[7]  G. Poberaj,et al.  Optical Microring Resonators in Fluorine-Implanted Lithium Niobate for Electrooptical Switching and Filtering , 2009, IEEE Photonics Technology Letters.

[8]  Feng Chen,et al.  Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 microm. , 2008, Optics express.

[9]  G. G. Bentini,et al.  Waveguide formation by ion implantation in Er doped optical materials , 2008 .

[10]  Feng Chen,et al.  Development of ion-implanted optical waveguides in optical materials: A review , 2007 .

[11]  Daniele Rezzonico,et al.  Electro–optically tunable microring resonators in lithium niobate , 2007, 0705.2392.

[12]  Feng Chen,et al.  Property investigation of C+-ion-implanted LiNbO3 planar optical waveguides , 2005 .

[13]  Feng Chen,et al.  Monomode optical waveguide excited at 1540 nm in LiNbO(3) formed by MeV carbon ion implantation at low doses. , 2004, Optics express.

[14]  F. Caccavale,et al.  A numerical study of erbium doped active LiNbO/sub 3/ waveguides by the beam propagation method , 1997 .

[15]  John M. Gary,et al.  Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm , 1997 .

[16]  L. Mccaughan,et al.  980-nm-pumped Er-doped LiNbO/sub 3/ waveguide amplifiers: a comparison with 1484-nm pumping , 1996 .

[17]  I. Baumann,et al.  Er-doped integrated optical devices in LiNbO/sub 3/ , 1996 .

[18]  I. Baumann,et al.  Er-Doped Integrated Optical Devices in LiNbO , 1996 .

[19]  Leon McCaughan,et al.  Evaluation of absorption and emission cross sections of Er-doped LiNbO/sub 3/ for application to integrated optic amplifiers , 1994 .

[20]  M. Zoboli,et al.  Analysis of erbium-doped waveguide amplifiers by a full-vectorial finite-element method , 1993 .

[21]  R. P. Edwin,et al.  Refractive indices of lithium niobate , 1976 .