Realization of atomically controlled dopant devices in silicon.

was developed, similar to opticallithography found in the semiconductor industry and elec-tron-beam lithography used in the research environment.The basic concept involves passivating the Si surface withhydrogen atoms, thus forming an atomic monolayer of hy-drogen resist. The extremely confined electron beam from ascanning tunneling microscopy (STM) tip is then used toremove either multiple or individual hydrogen atoms fromthis resist under certain voltage and current conditions,thereby exposing the silicon surface underneath. Thesehighly reactive dangling bonds provide adsorption sites foratomic and molecular species including oxygen,

[1]  A Step Toward Making and Wiring Up Molecular-Scale Devices , 2001 .

[2]  J. Tucker,et al.  Nanoscale electronics based on two-dimensional dopant patterns in silicon , 2004 .

[3]  Stroscio,et al.  Electronic structure of the Si(111)2 x 1 surface by scanning-tunneling microscopy. , 1986, Physical review letters.

[4]  P. Griffin,et al.  Point defects and dopant diffusion in silicon , 1989 .

[5]  Ling Pan,et al.  Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. , 2005, Nano letters.

[6]  M. Aono,et al.  Nanoscale growth of silver on prepatterned hydrogen-terminated Si(001) surfaces , 2000 .

[7]  L. Oberbeck,et al.  STM imaging of buried P atoms in hydrogen-terminated Si for the fabrication of a Si:P quantum computer , 2004 .

[8]  L. Oberbeck,et al.  Effect of encapsulation temperature on Si:P δ-doped layers , 2004 .

[9]  R. A. Smith,et al.  Gate controlled Coulomb blockade effects in the conduction of a silicon quantum wire , 1997 .

[10]  Atom electronics: a proposal of atom/molecule switching devices , 1997 .

[11]  Michelle Y. Simmons,et al.  Measurement of phosphorus segregation in silicon at the atomic scale using scanning tunneling microscopy , 2003 .

[12]  John R. Tucker,et al.  Nanoscale patterning and oxidation of H‐passivated Si(100)‐2×1 surfaces with an ultrahigh vacuum scanning tunneling microscope , 1994 .

[13]  Masaaki Fujimori,et al.  Fabrication of four-probe fine electrodes on an atomically smooth Si(100)-2 ? 1-H surface , 2004 .

[14]  J. Lyding,et al.  Atom-resolved three-dimensional mapping of boron dopants in Si(100) by scanning tunneling microscopy , 2001 .

[15]  Colin Nuckolls,et al.  Dependence of single-molecule junction conductance on molecular conformation , 2006, Nature.

[16]  Takahiro Shinada,et al.  Enhancing semiconductor device performance using ordered dopant arrays , 2005, Nature.

[17]  Toshiaki Hayashi,et al.  Time-dependent single-electron transport through quantum dots , 2006 .

[18]  C. Wang,et al.  Al nucleation on monohydride and bare Si(001) surfaces: atomic scale patterning , 1997 .

[19]  L. J. Geerligs,et al.  Fabrication of Co/Si nanowires by ultrahigh-vacuum scanning tunneling microscopy on hydrogen-passivated Si(100) surfaces , 1999 .

[20]  D. Muller,et al.  Geometric Frustration of 2D Dopants in Silicon: Surpassing Electrical Saturation , 1999 .

[21]  E. Burte,et al.  A simple two-step phosphorus doping process for shallow junctions by applying a controlled adsorption and a diffusion in an oxidising ambient , 2004 .

[22]  M. Hersam,et al.  Room temperature nanofabrication of atomically registered heteromolecular organosilicon nanostructures using multistep feedback controlled lithography , 2004 .

[23]  Konstantin K. Likharev,et al.  Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions , 1986 .

[24]  Michelle Y. Simmons,et al.  Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy , 2004 .

[25]  R. A. Beckman,et al.  Fabrication of conducting Si nanowire arrays , 2004, cond-mat/0403518.

[26]  G. Lopinski,et al.  Self-directed growth of molecular nanostructures on silicon , 2000, Nature.

[27]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[28]  M Y Simmons,et al.  Atomically precise placement of single dopants in si. , 2003, Physical review letters.

[29]  J. Tucker,et al.  Prospects for atomically ordered device structures based on STM lithography , 1998 .

[30]  L. Oberbeck,et al.  The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures , 2005, Nanotechnology.

[31]  S. R. Schofield,et al.  Phosphine dissociation on the Si(001) surface. , 2004, Physical review letters.

[32]  Wilkinson,et al.  Resonant tunneling through the bound states of a single donor atom in a quantum well. , 1992, Physical review letters.

[33]  Nanofabrication and rapid imaging with a scanning tunneling microscope , 1994 .

[34]  Wei Lu,et al.  Synthesis and Fabrication of High‐Performance n‐Type Silicon Nanowire Transistors , 2004 .

[35]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[36]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[37]  M. Lagally,et al.  Fabrication of Atomic-Scale Structures on Si(001) Surfaces , 1994, Science.

[38]  J. Bokor,et al.  Formation of 15 nm scale coulomb blockade structures in silicon by electron beam lithography with a bilayer resist process , 2004 .

[39]  Abstreiter,et al.  Segregation and diffusion on semiconductor surfaces. , 1996, Physical review. B, Condensed matter.

[40]  Robert A. Wolkow,et al.  Patterning of Vinylferrocene on H−Si(100) via Self-Directed Growth of Molecular Lines and STM-Induced Decomposition , 2002 .

[41]  M. Y. Simmons,et al.  Towards the fabrication of phosphorus qubits for a silicon quantum computer , 2001 .

[42]  J. Lyding,et al.  Ultrahigh-vacuum scanning tunneling microscopy and spectroscopy of single-walled carbon nanotubes on hydrogen-passivated Si(100) surfaces , 2003 .