Stochastic Variational Deep Kernel Learning
暂无分享,去创建一个
Andrew Gordon Wilson | Eric P. Xing | Zhiting Hu | Ruslan Salakhutdinov | A. G. Wilson | R. Salakhutdinov | E. Xing | Zhiting Hu | A. Wilson
[1] B. Silverman,et al. Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .
[2] Carl E. Rasmussen,et al. Occam's Razor , 2000, NIPS.
[3] Charu C. Aggarwal,et al. On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.
[4] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[5] Benjamin Recht,et al. Random Features for Large-Scale Kernel Machines , 2007, NIPS.
[6] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[7] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[8] David Ginsbourger,et al. Additive Kernels for Gaussian Process Modeling , 2011, 1103.4023.
[9] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[10] Ethem Alpaydin,et al. Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..
[11] Geoffrey E. Hinton,et al. ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.
[12] Andrew Gordon Wilson,et al. Gaussian Process Regression Networks , 2011, ICML.
[13] Andrew Gordon Wilson,et al. Gaussian Process Kernels for Pattern Discovery and Extrapolation , 2013, ICML.
[14] Alexander J. Smola,et al. Fastfood - Computing Hilbert Space Expansions in loglinear time , 2013, ICML.
[15] Neil D. Lawrence,et al. Deep Gaussian Processes , 2012, AISTATS.
[16] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[17] Joshua B. Tenenbaum,et al. Automatic Construction and Natural-Language Description of Nonparametric Regression Models , 2014, AAAI.
[18] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[19] Carl E. Rasmussen,et al. Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models , 2014, NIPS.
[20] Trevor Darrell,et al. Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.
[21] James Hensman,et al. MCMC for Variationally Sparse Gaussian Processes , 2015, NIPS.
[22] Andrew Gordon Wilson,et al. Thoughts on Massively Scalable Gaussian Processes , 2015, ArXiv.
[23] Edwin V. Bonilla,et al. Scalable Inference for Gaussian Process Models with Black-Box Likelihoods , 2015, NIPS.
[24] James Hensman,et al. Scalable Variational Gaussian Process Classification , 2014, AISTATS.
[25] Michael A. Osborne,et al. Blitzkriging: Kronecker-structured Stochastic Gaussian Processes , 2015, 1510.07965.
[26] Richard E. Turner,et al. Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints , 2015 .
[27] Andrew Gordon Wilson,et al. Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) , 2015, ICML.
[28] Le Song,et al. A la Carte - Learning Fast Kernels , 2014, AISTATS.
[29] Andrew Gordon Wilson,et al. Deep Kernel Learning , 2015, AISTATS.
[30] Neil D. Lawrence,et al. Variational Auto-encoded Deep Gaussian Processes , 2015, ICLR.
[31] Carl E. Rasmussen,et al. Manifold Gaussian Processes for regression , 2014, 2016 International Joint Conference on Neural Networks (IJCNN).