Coloring axis-parallel rectangles

For every k and r, we construct a finite family of axis-parallel rectangles in the plane such that no matter how we color them with k colors, there exists a point covered by precisely r members of the family, all of which have the same color. For r=2, this answers a question of S. Smorodinsky [S. Smorodinsky, On the chromatic number of some geometric hypergraphs, SIAM J. Discrete Math. 21 (2007) 676-687].

[1]  William Gasarach Review of "Research Problems in Discrete Geometry by Brass, Moser, Pach," Springer-Verlag , 2007, SIGA.

[2]  Shakhar Smorodinsky On the chromatic number of some geometric hypergraphs , 2006, SODA '06.

[3]  Sariel Har-Peled,et al.  Conflict-Free Coloring of Points and Simple Regions in the Plane , 2005, Discret. Comput. Geom..

[4]  János Pach,et al.  Delaunay graphs of point sets in the plane with respect to axis-parallel rectangles , 2009 .

[5]  Jaroslav Nešetřil,et al.  Chromatic number of Hasse diagrams, eyebrows and dimension , 1991 .

[6]  János Pach,et al.  Covering the plane with convex polygons , 1986, Discret. Comput. Geom..

[7]  Gábor Tardos,et al.  Multiple Coverings of the Plane with Triangles , 2007, Discret. Comput. Geom..

[8]  Jean Cardinal,et al.  Coloring Geometric Range Spaces , 2009, Discret. Comput. Geom..

[9]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[10]  Dana Ron,et al.  Conflict-Free Colorings of Simple Geometric Regions with Applications to Frequency Assignment in Cellular Networks , 2003, SIAM J. Comput..

[11]  Shakhar Smorodinsky,et al.  On The Chromatic Number of Geometric Hypergraphs , 2007, SIAM J. Discret. Math..

[12]  János Pach,et al.  Decomposition of multiple coverings into many parts , 2009, Comput. Geom..

[13]  Balázs Keszegh,et al.  Weak Conflict-Free Colorings of Point Sets and Simple Regions , 2007, CCCG.

[14]  Khaled M. Elbassioni,et al.  Conflict-free coloring for rectangle ranges using O(n.382) colors , 2007, SPAA '07.

[15]  Jirí Matousek,et al.  The Minimum Independence Number of a Hasse Diagram , 2006, Comb. Probab. Comput..

[16]  János Pach,et al.  Indecomposable Coverings , 2005, Canadian Mathematical Bulletin.

[17]  J. Pach Decomposition of multiple packing and covering , 1980 .

[18]  J. Pach,et al.  Decomposition problems for multiple coverings with unit balls, manuscript. , 1988 .