Note on von Neumann and R\'enyi entropies of a Graph
暂无分享,去创建一个
David E. Roberson | Simone Severini | Michael Young | Jephian C.-H. Lin | Joshua Lockhart | Michael Dairyko | Leslie Hogben | David Roberson | Michael Young | S. Severini | L. Hogben | D. Roberson | J. Lockhart | J. Lin | Michael Dairyko
[1] Ryan R. Martin,et al. Expected values of parameters associated with the minimum rank of a graph , 2010, 1605.05692.
[2] S. Severini,et al. The Laplacian of a Graph as a Density Matrix: A Basic Combinatorial Approach to Separability of Mixed States , 2004, quant-ph/0406165.
[3] D. Petz,et al. Quantum Entropy and Its Use , 1993 .
[4] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[5] Damon Mosk-Aoyama,et al. Maximum algebraic connectivity augmentation is NP-hard , 2008, Operations Research Letters.
[6] Deniz Erdogmus,et al. Renyi's Entropy, Divergence and Their Nonparametric Estimators , 2010, Information Theoretic Learning.
[7] Dominique de Caen,et al. An upper bound on the sum of squares of degrees in a graph , 1998, Discret. Math..
[8] Simone Severini,et al. Quantifying Complexity in Networks: The von Neumann Entropy , 2009, Int. J. Agent Technol. Syst..
[9] A. Rényi. On Measures of Entropy and Information , 1961 .
[10] Isaac L. Chuang,et al. Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .