Missing Data Imputation by LOLIMOT and FSVM/FSVR Algorithms with a Novel Approach: A Comparative Study

Missing values occurrence is an inherent part of collecting data sets in real world’s problems. This issue, causes lots of ambiguities in data analysis while processing data sets. Therefore, implementing methods which can handle missing data issues are critical in many fields, in order to providing accurate, efficient and valid analysis.

[1]  Chen Hong,et al.  Clustering Algorithm for Incomplete Data Sets with Mixed Numeric and Categorical Attributes , 2013 .

[2]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[3]  Bernhard Schölkopf,et al.  Extracting Support Data for a Given Task , 1995, KDD.

[4]  Therese D. Pigott,et al.  A Review of Methods for Missing Data , 2001 .

[5]  O. Nelles Nonlinear System Identification , 2001 .

[6]  Isabelle Guyon,et al.  Comparison of classifier methods: a case study in handwritten digit recognition , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[7]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[8]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[9]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[10]  Jitender S. Deogun,et al.  Towards Missing Data Imputation: A Study of Fuzzy K-means Clustering Method , 2004, Rough Sets and Current Trends in Computing.

[11]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[12]  Ping-Feng Pai,et al.  A fuzzy support vector regression model for business cycle predictions , 2010, Expert Syst. Appl..

[13]  Francisco Herrera,et al.  A study on the use of imputation methods for experimentation with Radial Basis Function Network classifiers handling missing attribute values: The good synergy between RBFNs and EventCovering method , 2010, Neural Networks.

[14]  H. P. Huang,et al.  Fuzzy Support Vector Machines for Pattern Recognition and Data Mining , 2002 .

[15]  Lipo Wang Support vector machines : theory and applications , 2005 .

[16]  Caro Lucas,et al.  Artificial bee colony based learning of local linear neuro-fuzzy models , 2013, 2013 13th Iranian Conference on Fuzzy Systems (IFSC).

[17]  Geert Verbeke,et al.  Analysis of incomplete data , 2005 .

[18]  Abdollah Arasteh,et al.  Application of local linear neuro-fuzzy model in prediction of mean arterial blood pressure time series , 2010, 2010 17th Iranian Conference of Biomedical Engineering (ICBME).

[19]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[20]  J. Schafer,et al.  Missing data: our view of the state of the art. , 2002, Psychological methods.

[21]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[22]  Jerzy W. Grzymala-Busse,et al.  A Closest Fit Approach to Missing Attribute VAlues in Preterm Birth Data , 1999, RSFDGrC.

[23]  Zhengxin Chen,et al.  Data Mining and Uncertain Reasoning: An Integrated Approach , 2001 .

[24]  Phayung Meesad,et al.  Combined numerical and linguistic knowledge representation and its application to medical diagnosis , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[25]  Jiri Kaiser,et al.  Dealing with Missing Values in Data , 2014 .

[26]  Craig K. Enders,et al.  Applied Missing Data Analysis , 2010 .

[27]  Gustavo E. A. P. A. Batista,et al.  A Study of K-Nearest Neighbour as an Imputation Method , 2002, HIS.

[28]  Jerzy W. Grzymala-Busse,et al.  A Comparison of Several Approaches to Missing Attribute Values in Data Mining , 2000, Rough Sets and Current Trends in Computing.

[29]  Behrooz Makki,et al.  A Neuro-Fuzzy Approach to Diagnosis of Neonatal Jaundice , 2006, 2006 1st Bio-Inspired Models of Network, Information and Computing Systems.

[30]  William Stafford Noble,et al.  Support vector machine , 2013 .

[31]  Francisco Herrera,et al.  On the choice of the best imputation methods for missing values considering three groups of classification methods , 2012, Knowledge and Information Systems.

[32]  Oliver Nelles,et al.  Local Linear Neuro-Fuzzy Models: Fundamentals , 2020, Nonlinear System Identification.

[33]  Sheng-De Wang,et al.  Fuzzy support vector machines , 2002, IEEE Trans. Neural Networks.