Pricing Options Using Lattice Rules

Abstract There are many examples of option contracts in which the payoff depends on several stochastic variables. These options often can be priced by the valuation of multidimensional integrals. Quasi–Monte Carlo methods are an effective numerical tool for this task. We show that, when the dimensions of the problem are small (say, less than 10), a special type of quasi–Monte Carlo known as the lattice rule method is very efficient. We provide an overview of lattice rules, and we show how to implement this method and demonstrate its efficiency relative to standard Monte Carlo and classical quasi–Monte Carlo. To maximize the efficiency gains, we show how to exploit the regularity of the integrand through a periodization technique. We demonstrate the superior efficiency of the method both in the estimation of prices as well as in the estimation of partial derivatives of these prices (the so-called Greeks). In particular this approach provides good estimates of the second derivative (the gamma) of the price in contrast to traditional Monte Carlo methods, which normally yield poor estimates. Although this method is not new, it appears that the advantages of lattice rules in the context of insurance and finance applications have not been fully appreciated in the literature.

[1]  Mary R. Hardy,et al.  Investment guarantees : modeling and risk management for equity-linked life insurance , 2003 .

[2]  Anny Haegemans,et al.  Transformation of Integrands for Lattice Rules , 1992 .

[3]  Ken Seng Tan,et al.  Applications of randomized low discrepancy sequences to the valuation of complex securities , 2000 .

[4]  Namir Clement Shammas C/C++ Mathematical Algorithms for Scientists and Engineers , 1995 .

[5]  P. Glasserman,et al.  A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing , 1998 .

[6]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[7]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[8]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[9]  K. S. Tan,et al.  Quasi-Monte Carlo Methods in Numerical Finance , 1996 .

[10]  P. Glasserman,et al.  Estimating security price derivatives using simulation , 1996 .

[11]  M. Goldman,et al.  Path Dependent Options: "Buy at the Low, Sell at the High" , 1979 .

[12]  V. Young,et al.  Optimal Design of a Perpetual Equity-Indexed Annuity , 2005 .

[13]  P. Gruber,et al.  Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .

[14]  R. Heynen,et al.  Lookback options with discrete and partial monitoring of the underlying price , 1995 .

[15]  Tuffin Bruno On the use of low discrepancy sequences in Monte Carlo methods , 1996 .

[16]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[17]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[18]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[19]  Serena Tiong Valuing Equity-Indexed Annuities , 2000 .

[20]  S. Tezuka,et al.  Toward real-time pricing of complex financial derivatives , 1996 .

[21]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[22]  P. Boyle A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.

[23]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[24]  Shu Tezuka,et al.  Uniform Random Numbers , 1995 .

[25]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[26]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[27]  P. Glasserman,et al.  Variance Reduction Techniques for Estimating Value-at-Risk , 2000 .

[28]  J. N. Lyness,et al.  The representation of lattice quadrature rules as multiple sums , 1989 .

[29]  A. Genz Numerical Computation of Multivariate Normal Probabilities , 1992 .

[30]  P. Ross Pricing Derivatives the Martingale Way , 1998 .

[31]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[32]  Harald Niederreiter,et al.  Explicit global function fields over the binary field with many rational places , 1996 .

[33]  S. K. Zaremba,et al.  La Méthode des “Bons Treillis” pour le Calcul des Intégrales Multiples , 1972 .

[34]  A. Conze,et al.  Path Dependent Options: The Case of Lookback Options , 1991 .

[35]  Hangsuck Lee Pricing equity-indexed annuities with path-dependent options , 2003 .

[36]  P. Boyle,et al.  Numerical Evaluation of Multivariate Contingent Claims , 1989 .

[37]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[38]  I. Sloan,et al.  Lattice methods for multiple integration: theory, error analysis and examples , 1987 .

[39]  Christiane Lemieux,et al.  Efficiency improvement by lattice rules for pricing Asian options , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[40]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[41]  I. F. Sharygin,et al.  A lower estimate for the error of quadrature formulae for certain classes of functions , 1963 .

[42]  Neil D. Pearson An Efficient Approach for Pricing Spread Options , 1995 .

[43]  René M. Stulz,et al.  Options on the minimum or the maximum of two risky assets : Analysis and applications , 1982 .

[44]  Harald Niederreiter,et al.  Global function fields with many rational places over the ternary field , 1998 .

[45]  S. Joe Letter section: Randomization of lattice rules for numerical multiple integration , 1990 .

[46]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[47]  Bruno Tuffin,et al.  On the use of low discrepancy sequences in Monte Carlo methods , 1996, Monte Carlo Methods Appl..

[48]  Ken Seng Tan,et al.  Valuation of Equity-Indexed Annuities Under Stochastic Interest Rates , 2003 .

[49]  P. Keast,et al.  Optimal Parameters for Multidimensional Integration , 1973 .

[50]  D. W. Arthur,et al.  Methods of numerical Integration (2nd edition), by Philip J. Davis and Philip Rabinowitz. Pp 612. £36·50. 1984. ISBN 0-12-206360-0 (Academic Press) , 1986, The Mathematical Gazette.

[51]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[52]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[53]  S. Haber Parameters for integrating periodic functions of several variables , 1983 .

[54]  Harald Niederreiter Improved Error Bounds for Lattice Rules , 1993, J. Complex..

[55]  William Margrabe The Value of an Option to Exchange One Asset for Another , 1978 .

[56]  H. Niederreiter Existence of good lattice points in the sense of Hlawka , 1978 .