Pricing Options Using Lattice Rules
暂无分享,去创建一个
[1] Mary R. Hardy,et al. Investment guarantees : modeling and risk management for equity-linked life insurance , 2003 .
[2] Anny Haegemans,et al. Transformation of Integrands for Lattice Rules , 1992 .
[3] Ken Seng Tan,et al. Applications of randomized low discrepancy sequences to the valuation of complex securities , 2000 .
[4] Namir Clement Shammas. C/C++ Mathematical Algorithms for Scientists and Engineers , 1995 .
[5] P. Glasserman,et al. A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing , 1998 .
[6] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[7] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[8] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[9] K. S. Tan,et al. Quasi-Monte Carlo Methods in Numerical Finance , 1996 .
[10] P. Glasserman,et al. Estimating security price derivatives using simulation , 1996 .
[11] M. Goldman,et al. Path Dependent Options: "Buy at the Low, Sell at the High" , 1979 .
[12] V. Young,et al. Optimal Design of a Perpetual Equity-Indexed Annuity , 2005 .
[13] P. Gruber,et al. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .
[14] R. Heynen,et al. Lookback options with discrete and partial monitoring of the underlying price , 1995 .
[15] Tuffin Bruno. On the use of low discrepancy sequences in Monte Carlo methods , 1996 .
[16] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[17] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[18] P. Glasserman,et al. Monte Carlo methods for security pricing , 1997 .
[19] Serena Tiong. Valuing Equity-Indexed Annuities , 2000 .
[20] S. Tezuka,et al. Toward real-time pricing of complex financial derivatives , 1996 .
[21] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[22] P. Boyle. A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.
[23] D. Duffie. Dynamic Asset Pricing Theory , 1992 .
[24] Shu Tezuka,et al. Uniform Random Numbers , 1995 .
[25] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[26] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[27] P. Glasserman,et al. Variance Reduction Techniques for Estimating Value-at-Risk , 2000 .
[28] J. N. Lyness,et al. The representation of lattice quadrature rules as multiple sums , 1989 .
[29] A. Genz. Numerical Computation of Multivariate Normal Probabilities , 1992 .
[30] P. Ross. Pricing Derivatives the Martingale Way , 1998 .
[31] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[32] Harald Niederreiter,et al. Explicit global function fields over the binary field with many rational places , 1996 .
[33] S. K. Zaremba,et al. La Méthode des “Bons Treillis” pour le Calcul des Intégrales Multiples , 1972 .
[34] A. Conze,et al. Path Dependent Options: The Case of Lookback Options , 1991 .
[35] Hangsuck Lee. Pricing equity-indexed annuities with path-dependent options , 2003 .
[36] P. Boyle,et al. Numerical Evaluation of Multivariate Contingent Claims , 1989 .
[37] Pierre L'Ecuyer,et al. Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .
[38] I. Sloan,et al. Lattice methods for multiple integration: theory, error analysis and examples , 1987 .
[39] Christiane Lemieux,et al. Efficiency improvement by lattice rules for pricing Asian options , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).
[40] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[41] I. F. Sharygin,et al. A lower estimate for the error of quadrature formulae for certain classes of functions , 1963 .
[42] Neil D. Pearson. An Efficient Approach for Pricing Spread Options , 1995 .
[43] René M. Stulz,et al. Options on the minimum or the maximum of two risky assets : Analysis and applications , 1982 .
[44] Harald Niederreiter,et al. Global function fields with many rational places over the ternary field , 1998 .
[45] S. Joe. Letter section: Randomization of lattice rules for numerical multiple integration , 1990 .
[46] S. Tezuka. Uniform Random Numbers: Theory and Practice , 1995 .
[47] Bruno Tuffin,et al. On the use of low discrepancy sequences in Monte Carlo methods , 1996, Monte Carlo Methods Appl..
[48] Ken Seng Tan,et al. Valuation of Equity-Indexed Annuities Under Stochastic Interest Rates , 2003 .
[49] P. Keast,et al. Optimal Parameters for Multidimensional Integration , 1973 .
[50] D. W. Arthur,et al. Methods of numerical Integration (2nd edition), by Philip J. Davis and Philip Rabinowitz. Pp 612. £36·50. 1984. ISBN 0-12-206360-0 (Academic Press) , 1986, The Mathematical Gazette.
[51] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[52] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[53] S. Haber. Parameters for integrating periodic functions of several variables , 1983 .
[54] Harald Niederreiter. Improved Error Bounds for Lattice Rules , 1993, J. Complex..
[55] William Margrabe. The Value of an Option to Exchange One Asset for Another , 1978 .
[56] H. Niederreiter. Existence of good lattice points in the sense of Hlawka , 1978 .