Structural features in common of HBV and HIV-1 resistance against chirally-distinct nucleoside analogues entecavir and lamivudine

[1]  K. Anderson,et al.  Structural insights into the recognition of nucleoside reverse transcriptase inhibitors by HIV‐1 reverse transcriptase: First crystal structures with reverse transcriptase and the active triphosphate forms of lamivudine and emtricitabine , 2019, Protein science : a publication of the Protein Society.

[2]  Eddy Arnold,et al.  Structure of HIV-1 RT/dsRNA initiation complex prior to nucleotide incorporation , 2019, Proceedings of the National Academy of Sciences.

[3]  H. Mitsuya,et al.  Active-site deformation in the structure of HIV-1 RT with HBV-associated septuple amino acid substitutions rationalizes the differential susceptibility of HIV-1 and HBV against 4'-modified nucleoside RT inhibitors. , 2019, Biochemical and biophysical research communications.

[4]  S. Sarafianos,et al.  CMCdG, a Novel Nucleoside Analog with Favorable Safety Features, Exerts Potent Activity against Wild-Type and Entecavir-Resistant Hepatitis B Virus , 2019, Antimicrobial Agents and Chemotherapy.

[5]  T. Liang,et al.  Development of Direct-acting Antiviral and Host-targeting Agents for Treatment of Hepatitis B Virus Infection. , 2019, Gastroenterology.

[6]  S. Sarafianos,et al.  The High Genetic Barrier of EFdA/MK-8591 Stems from Strong Interactions with the Active Site of Drug-Resistant HIV-1 Reverse Transcriptase. , 2018, Cell chemical biology.

[7]  H. Mitsuya,et al.  HIV-1 with HBV-associated Q151M substitution in RT becomes highly susceptible to entecavir: structural insights into HBV-RT inhibition by entecavir , 2018, Scientific Reports.

[8]  H. Chan,et al.  Tenofovir Alafenamide: A Review in Chronic Hepatitis B , 2017, Drugs.

[9]  A. Cuconati,et al.  Hepatitis B Virus , 2017, Methods in Molecular Biology.

[10]  S. Sarafianos,et al.  Structural basis of HIV inhibition by translocation-defective RT inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) , 2016, Proceedings of the National Academy of Sciences.

[11]  J. Casado Renal and Bone Toxicity with the Use of Tenofovir: Understanding at the End. , 2016, AIDS reviews.

[12]  S. Tuske,et al.  Structure of HIV‐1 reverse transcriptase bound to a novel 38‐mer hairpin template‐primer DNA aptamer , 2015, Protein science : a publication of the Protein Society.

[13]  E. De Clercq Tenofovir alafenamide (TAF) as the successor of tenofovir disoproxil fumarate (TDF). , 2016, Biochemical pharmacology.

[14]  Y. Yasutake,et al.  Structure of the HIV-1 reverse transcriptase Q151M mutant: insights into the inhibitor resistance of HIV-1 reverse transcriptase and the structure of the nucleotide-binding pocket of Hepatitis B virus polymerase , 2015, Acta crystallographica. Section F, Structural biology communications.

[15]  S. Sarafianos,et al.  4′‐modified nucleoside analogs: Potent inhibitors active against entecavir‐resistant hepatitis B virus , 2015, Hepatology.

[16]  Y. Karino,et al.  Characterization of novel entecavir resistance mutations. , 2015, Journal of hepatology.

[17]  A. Zlotnick,et al.  Encapsidated hepatitis B virus reverse transcriptase is poised on an ordered RNA lattice , 2014, Proceedings of the National Academy of Sciences.

[18]  Alberto J. M. Martin,et al.  An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine. , 2014, Molecular bioSystems.

[19]  H. Mitsuya,et al.  Delayed Emergence of HIV-1 Variants Resistant to 4′-Ethy Nyl-2-Fluoro-2′-Deoxyadenosine: Comparative Sequential Passage Study with Lamivudine, Tenofovir, Emtricitabine and BMS-986001 , 2014, Antiviral therapy.

[20]  N. Ferguson,et al.  Large-Scale Production and Structural and Biophysical Characterizations of the Human Hepatitis B Virus Polymerase , 2013, Journal of Virology.

[21]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[22]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[23]  Jason D. Fowler,et al.  Pre-Steady-State Kinetic Analysis of the Incorporation of Anti-HIV Nucleotide Analogs Catalyzed by Human X- and Y-Family DNA Polymerases , 2010, Antimicrobial Agents and Chemotherapy.

[24]  Roger A. Jones,et al.  Structural basis of HIV-1 resistance to AZT by excision , 2010, Nature Structural &Molecular Biology.

[25]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[26]  W. Kabsch XDS , 2010, Acta crystallographica. Section D, Biological crystallography.

[27]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[28]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[29]  Roger A. Jones,et al.  Structural Basis for the Role of the K65R Mutation in HIV-1 Reverse Transcriptase Polymerization, Excision Antagonism, and Tenofovir Resistance* , 2009, The Journal of Biological Chemistry.

[30]  M. Nassal New insights into HBV replication: new opportunities for improved therapies , 2009 .

[31]  Lin Shen,et al.  The HBV drug entecavir - effects on HIV-1 replication and resistance. , 2007, The New England journal of medicine.

[32]  Christopher M. Bailey,et al.  Activity against Human Immunodeficiency Virus Type 1, Intracellular Metabolism, and Effects on Human DNA Polymerases of 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine , 2007, Antimicrobial Agents and Chemotherapy.

[33]  Ronald E. Rose,et al.  Inhibition of Hepatitis B Virus Polymerase by Entecavir , 2007, Journal of Virology.

[34]  Colin W Shepard,et al.  Hepatitis B virus infection: epidemiology and vaccination. , 2006, Epidemiologic reviews.

[35]  L. Bacheler,et al.  The K65R Mutation in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Exhibits Bidirectional Phenotypic Antagonism with Thymidine Analog Mutations , 2006, Journal of Virology.

[36]  Jeffrey J. DeStefano,et al.  Selection of primer-template sequences that bind human immunodeficiency virus reverse transcriptase with high affinity , 2006, Nucleic acids research.

[37]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[38]  M. Poirier,et al.  Zidovudine induces S-phase arrest and cell cycle gene expression changes in human cells. , 2005, Mutagenesis.

[39]  Roger A. Jones,et al.  Structures of HIV-1 RT–DNA complexes before and after incorporation of the anti-AIDS drug tenofovir , 2004, Nature Structural &Molecular Biology.

[40]  D. Lavanchy,et al.  Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures , 2004, Journal of viral hepatitis.

[41]  M. Otto,et al.  Mechanism of Antiviral Activities of 3′-Substituted L-Nucleosides against 3Tc-Resistant HBV Polymerase: A Molecular Modelling Approach , 2003, Antiviral chemistry & chemotherapy.

[42]  A. D. Clark,et al.  Structures of HIV‐1 reverse transcriptase with pre‐ and post‐translocation AZTMP‐terminated DNA , 2002, The EMBO journal.

[43]  R. J. Colonno,et al.  Efficacies of Entecavir against Lamivudine-Resistant Hepatitis B Virus Replication and Recombinant Polymerases In Vitro , 2002, Antimicrobial Agents and Chemotherapy.

[44]  S. Sarafianos,et al.  The role of steric hindrance in 3TC resistance of human immunodeficiency virus type-1 reverse transcriptase. , 2000, Journal of molecular biology.

[45]  C. Seeger,et al.  Hepatitis B Virus Biology , 2000, Microbiology and Molecular Biology Reviews.

[46]  A. D. Clark,et al.  Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  K. Anderson,et al.  Mechanistic studies comparing the incorporation of (+) and (-) isomers of 3TCTP by HIV-1 reverse transcriptase. , 1999, Biochemistry.

[48]  M. Wainberg,et al.  Endogenous reverse transcription assays reveal high-level resistance to the triphosphate of (-)2'-dideoxy-3'-thiacytidine by mutated M184V human immunodeficiency virus type 1 , 1996, Journal of virology.

[49]  M. Wainberg,et al.  Mutated K65R recombinant reverse transcriptase of human immunodeficiency virus type 1 shows diminished chain termination in the presence of 2',3'-dideoxycytidine 5'-triphosphate and other drugs. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  E. Arnold,et al.  Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Bartenschlager,et al.  Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription , 1994, Journal of virology.

[52]  D. Katzenstein,et al.  Combination therapy with zidovudine and didanosine selects for drug-resistant human immunodeficiency virus type 1 strains with unique patterns of pol gene mutations. , 1994, The Journal of infectious diseases.

[53]  F. Zoulim,et al.  Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase , 1994, Journal of virology.

[54]  D. Galas,et al.  A simple method for site-directed mutagenesis using the polymerase chain reaction. , 1989, Nucleic acids research.

[55]  J. Summers,et al.  Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate , 1982, Cell.