A proximal point algorithm revisit on the alternating direction method of multipliers

[1]  Hua Nie,et al.  Multiplicity results for the unstirred chemostat model with general response functions , 2013 .

[2]  Canonical solitons associated with generalized Ricci flows , 2013 .

[3]  Runze Li,et al.  Robust estimation for partially linear models with large-dimensional covariates , 2013, Science China. Mathematics.

[4]  Wan-Tong Li,et al.  Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation , 2013 .

[5]  Global smoothing for the periodic Benjamin equation in low-regularity spaces , 2013 .

[6]  Bingsheng He,et al.  A customized proximal point algorithm for convex minimization with linear constraints , 2013, Comput. Optim. Appl..

[7]  L. Liao,et al.  On a certain type of nonlinear differential equations admitting transcendental meromorphic solutions , 2013 .

[8]  X. Jiao,et al.  Totally real conformal minimal tori in the hyperquadric Q2 , 2013 .

[9]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[10]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[11]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[12]  Masao Fukushima,et al.  The primal douglas-rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem , 1996, Math. Program..

[13]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[14]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[15]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[16]  E. G. Gol'shtein,et al.  Modified Lagrangians in Convex Programming and their Generalizations , 1979 .

[17]  W. W. Breckner Blum, E. / Oettli, W., Mathematische Optimierung, Grundlagen und Verfahren, IX, 413 S., 5 Abb., Berlin‐Heidelberg‐New York. Springer‐Verlag. 1975. DM 148,‐. US $ 60.70 . , 1977 .

[18]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[19]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[20]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[21]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[22]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[23]  M. Hestenes Multiplier and gradient methods , 1969 .

[24]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[25]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .