Comprehensive Analysis of Source and Drain Recess Depth Variations on Silicon Nanosheet FETs for Sub 5-nm Node SoC Application

Excess source and drain (S/D) recess depth (<inline-formula> <tex-math notation="LaTeX">$T_{SD}$ </tex-math></inline-formula>) variations were analyzed comprehensively as one of the most critical factors to DC/AC performances of sub 5-nm node Si-Nanosheet (NS) FETs for system-on-chip (SoC) applications. Variations of off-, on-state currents (<inline-formula> <tex-math notation="LaTeX">$I_{off}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$I_{on}$ </tex-math></inline-formula>) in three-stacked NS channels and parasitic bottom transistor (<inline-formula> <tex-math notation="LaTeX">$tr_{pbt}$ </tex-math></inline-formula>), gate capacitance (<inline-formula> <tex-math notation="LaTeX">$C_{gg}$ </tex-math></inline-formula>), intrinsic switching delay time (<inline-formula> <tex-math notation="LaTeX">$\tau _{d}$ </tex-math></inline-formula>), and static power dissipation (<inline-formula> <tex-math notation="LaTeX">$P_{static}$ </tex-math></inline-formula>) are investigated quantitatively according to the <inline-formula> <tex-math notation="LaTeX">$T_{SD}$ </tex-math></inline-formula> variations. More S/D dopants diffuse into the <inline-formula> <tex-math notation="LaTeX">$tr_{pbt}$ </tex-math></inline-formula> with the deeper <inline-formula> <tex-math notation="LaTeX">$T_{SD}$ </tex-math></inline-formula>, so the <inline-formula> <tex-math notation="LaTeX">$I_{off}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$I_{on}$ </tex-math></inline-formula> increase due to raised current flowing through the <inline-formula> <tex-math notation="LaTeX">$tr_{pbt}$ </tex-math></inline-formula>. Especially, the <inline-formula> <tex-math notation="LaTeX">$I_{off}$ </tex-math></inline-formula> of PFETs remarkably increases above the certain <inline-formula> <tex-math notation="LaTeX">$T_{SD}$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$T_{SD,critical}$ </tex-math></inline-formula>) compared to NFETs. Furthermore, the <inline-formula> <tex-math notation="LaTeX">$I_{on}$ </tex-math></inline-formula> contribution of each channels having the <inline-formula> <tex-math notation="LaTeX">$T_{SD,critical}$ </tex-math></inline-formula> is the largest at the top NS channel and the <inline-formula> <tex-math notation="LaTeX">$tr_{pbt}$ </tex-math></inline-formula> has the ignorable <inline-formula> <tex-math notation="LaTeX">$I_{on}$ </tex-math></inline-formula> contribution. Among the NS channels, the top (bottom) NS channel has the largest (smallest) <inline-formula> <tex-math notation="LaTeX">$I_{on}$ </tex-math></inline-formula> contribution due to its larger (smaller) carrier density and velocity for both P-/NFETs. The <inline-formula> <tex-math notation="LaTeX">$C_{gg}$ </tex-math></inline-formula> also increases with the deeper <inline-formula> <tex-math notation="LaTeX">$T_{SD}$ </tex-math></inline-formula> by increasing parasitic capacitance, but fortunately, the <inline-formula> <tex-math notation="LaTeX">$\tau _{d}$ </tex-math></inline-formula> decreases simultaneously due to the larger increasing rate of the <inline-formula> <tex-math notation="LaTeX">$I_{on}$ </tex-math></inline-formula> than that of the <inline-formula> <tex-math notation="LaTeX">$C_{gg}$ </tex-math></inline-formula> for all SoC applications. However, the <inline-formula> <tex-math notation="LaTeX">$P_{static}$ </tex-math></inline-formula> enormously increases with the deeper <inline-formula> <tex-math notation="LaTeX">$T_{SD}$ </tex-math></inline-formula>, and low power application is the most sensitive to the <inline-formula> <tex-math notation="LaTeX">$T_{SD}$ </tex-math></inline-formula> variations among the SoC applications. Comprehensive analysis of the inevitable <inline-formula> <tex-math notation="LaTeX">$tr_{pbt}$ </tex-math></inline-formula> effects on DC/AC performances is one of the most critical indicators whether Si-NSFETs could be adopted to the sub 5-nm node CMOS technology.

[1]  E. Nowak,et al.  Scaling challenges of FinFET architecture below 40nm contacted gate pitch , 2017, 2017 75th Annual Device Research Conference (DRC).

[2]  C. Auth,et al.  A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[3]  R. Chau,et al.  A 90-nm logic technology featuring strained-silicon , 2004, IEEE Transactions on Electron Devices.

[4]  Yiming Li,et al.  Process-Dependence Analysis for Characteristic Improvement of Ring Oscillator Using 16-nm Bulk FinFET Devices , 2016, IEEE Transactions on Electron Devices.

[5]  N. Nilsson,et al.  The temperature dependence of band-to-band Auger recombination in silicon , 1979 .

[6]  Jun-Sik Yoon,et al.  Multi- ${V}_{\text{th}}$ Strategies of 7-nm node Nanosheet FETs With Limited Nanosheet Spacing , 2018, IEEE Journal of the Electron Devices Society.

[7]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .

[8]  X. Garros,et al.  High performance low temperature FinFET with DSPER, gate last and Self Aligned Contact for 3D sequential mtegration , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[9]  J. G. Fossum,et al.  Computer-aided numerical analysis of silicon solar cells , 1976 .

[10]  Jun-Sik Yoon,et al.  Optimization of nanosheet number and width of multi-stacked nanosheet FETs for sub-7-nm node system on chip applications , 2019, Japanese Journal of Applied Physics.

[11]  J. G. Lee,et al.  Impact of aggressive fin width scaling on FinFET device characteristics , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[12]  G. Bersuker,et al.  300mm FinFET results utilizing conformal, damage free, ultra shallow junctions (Xj∼5nm) formed with molecular monolayer doping technique , 2011, 2011 International Electron Devices Meeting.

[13]  Mark Y. Liu,et al.  A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size , 2014, 2014 IEEE International Electron Devices Meeting.

[14]  Uihui Kwon,et al.  Universal Swing Factor Approach For Performance Analysis Of Logic Nodes , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[15]  Jun-Sik Yoon,et al.  Metal Source-/Drain-Induced Performance Boosting of Sub-7-nm Node Nanosheet FETs , 2019, IEEE Transactions on Electron Devices.

[16]  S. A. Mujtaba ADVANCED MOBILITY MODELS FOR DESIGN AND SIMULATION OF DEEP SUBMICROMETER MOSFETS , 1995 .

[17]  P. Sung,et al.  A novel junctionless FinFET structure with sub-5nm shell doping profile by molecular monolayer doping and microwave annealing , 2014, 2014 IEEE International Electron Devices Meeting.

[18]  H. T. Lin,et al.  A 16nm FinFET CMOS technology for mobile SoC and computing applications , 2013, 2013 IEEE International Electron Devices Meeting.

[19]  M. Shur,et al.  Low ballistic mobility in submicron HEMTs , 2002, IEEE Electron Device Letters.

[20]  D. Mocuta,et al.  Vertically stacked gate-all-around Si nanowire transistors: Key Process Optimizations and Ring Oscillator Demonstration , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[21]  Chenming Hu,et al.  Future CMOS scaling and reliability , 1993, Proc. IEEE.

[22]  Massimo Vanzi,et al.  A physically based mobility model for numerical simulation of nonplanar devices , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  P. Bai,et al.  A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 /spl mu/m/sup 2/ SRAM cell , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[24]  Diederik Verkest,et al.  Device Exploration of NanoSheet Transistors for Sub-7-nm Technology Node , 2017, IEEE Transactions on Electron Devices.

[25]  A. Gnudi,et al.  Low-Field Electron Mobility Model for Ultrathin-Body SOI and Double-Gate MOSFETs With Extremely Small Silicon Thicknesses , 2007, IEEE Transactions on Electron Devices.

[26]  Jun-Sik Yoon,et al.  Process-Induced Variations of 10-nm Node Bulk nFinFETs Considering Middle-of-Line Parasitics , 2016, IEEE Transactions on Electron Devices.

[27]  Yiming Li,et al.  Analysis of In-Line Process Parameters of the Unity Gain Frequency of HKMG Bulk FinFET Devices , 2018, IEEE Electron Device Letters.

[28]  C. Auth,et al.  A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[29]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.

[30]  D. Klaassen,et al.  A new recombination model for device simulation including tunneling , 1992 .

[31]  G. Groeseneken,et al.  ESD diodes in a bulk Si gate-all-around vertically stacked horizontal nanowire technology , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[32]  T. Liu,et al.  Effectiveness of Stressors in Aggressively Scaled FinFETs , 2012, IEEE Transactions on Electron Devices.

[33]  D. Corliss,et al.  Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET , 2017, 2017 Symposium on VLSI Technology.

[34]  Yiming Li,et al.  A Systematic Approach to Correlation Analysis of In-Line Process Parameters for Process Variation Effect on Electrical Characteristic of 16-nm HKMG Bulk FinFET Devices , 2016, IEEE Transactions on Semiconductor Manufacturing.

[35]  M. Ancona,et al.  Macroscopic physics of the silicon inversion layer. , 1987, Physical review. B, Condensed matter.

[36]  J. Jopling,et al.  High performance 32nm logic technology featuring 2nd generation high-k + metal gate transistors , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[37]  P. Oldiges,et al.  A 7nm FinFET technology featuring EUV patterning and dual strained high mobility channels , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[38]  Ting-Kuo Kang Evidence for Silicon Bandgap Narrowing in Uniaxially Strained MOSFETs Subjected to Tensile and Compressive Stress , 2012, IEEE Electron Device Letters.

[39]  Jacob Fage-Pedersen,et al.  Boron and phosphorus diffusion in strained and relaxed Si and SiGe , 2003 .

[40]  O. Rozeau,et al.  Performance and design considerations for gate-all-around stacked-NanoWires FETs , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[41]  J. Slotboom,et al.  Unified apparent bandgap narrowing in n- and p-type silicon , 1992 .

[42]  N. A. F. Othman,et al.  Performance and Device Design Based on Geometry and Process Considerations for 14/16-nm Strained FinFETs , 2016, IEEE Transactions on Electron Devices.

[43]  A GVSU,et al.  South Korea , 2015, Nature.

[44]  R. Fair The effect of strain‐induced band‐gap narrowing on high concentration phosphorus diffusion in silicon , 1979 .

[45]  R. Chau,et al.  A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging , 2007, 2007 IEEE International Electron Devices Meeting.