Locking-free Simulation of Isometric Thin Plates

To efficiently simulate very thin, inextensible materials like cloth or paper, it is tempting to replace force-based thin-plate dynamics with hard isometry constraints. Unfortunately, naive formulations of the constraints induce membrane locking---artificial stiffening of bending modes due to the inability of discrete kinematics to reproduce exact isometries. We propose a simple set of meshless isometry constraints, based on moving-least-squares averaging of the strain tensor, which do not lock, and which can be easily incorporated into standard constrained Lagrangian dynamics integration.

[1]  Debasish Roy,et al.  A peridynamic theory for linear elastic shells , 2015 .

[2]  Alejandro Ortiz-Bernardin,et al.  Improved robustness for nearly-incompressible large deformation meshfree simulations on Delaunay tessellations , 2015 .

[3]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[4]  Eitan Grinspun,et al.  To appear in the ACM SIGGRAPH conference proceedings Efficient Simulation of Inextensible Cloth , 2007 .

[5]  Eitan Grinspun,et al.  Unified simulation of elastic rods, shells, and solids , 2010, ACM Trans. Graph..

[6]  Kai Tang,et al.  A fully geometric approach for developable cloth deformation simulation , 2010, The Visual Computer.

[7]  Jing Li,et al.  FEPR: fast energy projection for real-time simulation of deformable objects , 2018, ACM Trans. Graph..

[8]  D. Steigmann,et al.  Tension-field theory , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  D. Owen,et al.  Design of simple low order finite elements for large strain analysis of nearly incompressible solids , 1996 .

[10]  Huamin Wang,et al.  Projective Peridynamics for Modeling Versatile Elastoplastic Materials , 2018, IEEE Transactions on Visualization and Computer Graphics.

[11]  E. A. S. Neto,et al.  F‐bar‐based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking , 2005 .

[12]  B. Boroomand,et al.  On using linear elements in incompressible plane strain problems: a simple edge based approach for triangles , 2004 .

[13]  Wei Chen,et al.  Reformulating Hyperelastic Materials with Peridynamic Modeling , 2018, Comput. Graph. Forum.

[14]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[15]  Joshua A. Levine,et al.  A peridynamic perspective on spring-mass fracture , 2014, SCA '14.

[16]  Eitan Grinspun,et al.  A quadratic bending model for inextensible surfaces , 2006, SGP '06.

[17]  Ronald Fedkiw,et al.  Volume conserving finite element simulations of deformable models , 2007, ACM Trans. Graph..

[18]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[19]  Alessio Quaglino,et al.  Membrane locking in discrete shell theories , 2012 .

[20]  Alessio Quaglino,et al.  A framework for creating low‐order shell elements free of membrane locking , 2016 .

[21]  François Faure,et al.  Stable constrained dynamics , 2015, ACM Trans. Graph..

[22]  Xavier Provot,et al.  Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior , 1995 .

[23]  Eitan Grinspun,et al.  Computing discrete shape operators on general meshes , 2006, Comput. Graph. Forum.

[24]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[25]  Wei Chen,et al.  Peridynamics‐Based Fracture Animation for Elastoplastic Solids , 2018, Comput. Graph. Forum.

[26]  Ronald Fedkiw,et al.  Inequality cloth , 2017, Symposium on Computer Animation.

[27]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[28]  Weiran Yuan,et al.  Application of Meshless Local Petrov-Galerkin (MLPG) Method in Cloth Simulation , 2008 .

[29]  Matthias Teschner,et al.  A Geometric Deformation Model for Stable Cloth Simulation , 2008, VRIPHYS.

[30]  Pengbo Li,et al.  Multi-layer skin simulation with adaptive constraints , 2014, MIG.

[31]  Paul G. Kry,et al.  Embedded thin shells for wrinkle simulation , 2013, ACM Trans. Graph..

[32]  Afonso Paiva,et al.  Mesh‐Free Discrete Laplace–Beltrami Operator , 2013, Comput. Graph. Forum.

[33]  Robert Bridson,et al.  Animating developable surfaces using nonconforming elements , 2008, SIGGRAPH 2008.

[34]  Wolfgang Straßer,et al.  Continuum‐based Strain Limiting , 2009, Comput. Graph. Forum.

[35]  James F. O'Brien,et al.  Multi-resolution isotropic strain limiting , 2010, SIGGRAPH 2010.