Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis

This paper proposes a new method to measure economic inefficiency of decision making units based on the calculation of the least distance to the Pareto-efficient frontier in data envelopment analysis. While all previously published approaches that have dealt with the problem of determining least distances to the efficient frontier are focus on exclusively technical inefficiency, the new methodology opens the door to applications of this approach when market prices, together with inputs and outputs, are available. Finally, the paper empirically illustrates the new method using recent data on the mandarins’ production in a Spanish eastern province.

[1]  J. Pastor,et al.  On how to properly calculate the Euclidean distance-based measure in DEA , 2014 .

[2]  Ole Bent Olesen,et al.  Identification and Use of Efficient Faces and Facets in DEA , 2003 .

[3]  Juan Aparicio,et al.  Closest targets and minimum distance to the Pareto-efficient frontier in DEA , 2007 .

[4]  Juan Aparicio,et al.  The relevance of DEA benchmarking information and the Least-Distance Measure: Comment , 2010, Math. Comput. Model..

[5]  R. R. Russell,et al.  Measures of technical efficiency , 1985 .

[6]  Walter Briec,et al.  Metric Distance Function and Profit: Some Duality Results , 1999 .

[7]  Timo Kuosmanen,et al.  Firm and industry level profit efficiency analysis using absolute and uniform shadow prices , 2010, Eur. J. Oper. Res..

[8]  Walter Briec,et al.  Hölder Distance Function and Measurement of Technical Efficiency , 1999 .

[9]  Kazuyuki Sekitani,et al.  Distance optimization approach to ratio-form efficiency measures in data envelopment analysis , 2014 .

[10]  Kaoru Tone,et al.  A slacks-based measure of super-efficiency in data envelopment analysis , 2001, Eur. J. Oper. Res..

[11]  R. R. Russell,et al.  On the Axiomatic Approach to the Measurement of Technical Efficiency , 1988 .

[12]  Laurens Cherchye,et al.  A comment on multi-stage DEA methodology , 2001, Oper. Res. Lett..

[13]  Israfil Roshdi,et al.  DIRECTIONAL CLOSEST-TARGET BASED MEASURES OF EFFICIENCY: HOLDER NORMS APPROACH , 2013 .

[14]  Kaoru Tone,et al.  Cost, revenue and profit efficiency measurement in DEA: A directional distance function approach , 2014, Eur. J. Oper. Res..

[15]  F. Hosseinzadeh Lotfi,et al.  Finding strong defining hyperplanes of Production Possibility Set , 2007, Eur. J. Oper. Res..

[16]  Olvi L. Mangasarian,et al.  Arbitrary-norm separating plane , 1999, Oper. Res. Lett..

[17]  R. Färe,et al.  Profit, Directional Distance Functions, and Nerlovian Efficiency , 1998 .

[18]  R. Färe,et al.  The measurement of efficiency of production , 1985 .

[19]  Sebastián Lozano,et al.  Determining a sequence of targets in DEA , 2005, J. Oper. Res. Soc..

[20]  Kazuyuki Sekitani,et al.  Monotonicity of minimum distance inefficiency measures for Data Envelopment Analysis , 2017, Eur. J. Oper. Res..

[21]  Rolf Färe,et al.  Measuring the technical efficiency of production , 1978 .

[22]  Jesús T. Pastor,et al.  An enhanced DEA Russell graph efficiency measure , 1999, Eur. J. Oper. Res..

[23]  F. Hosseinzadeh Lotfi,et al.  Finding the piecewise linear frontier production function in data envelopment analysis , 2005, Appl. Math. Comput..

[24]  Hervé Leleu,et al.  Dual Representations of Non-Parametric Technologies and Measurement of Technical Efficiency , 2003 .

[25]  Emmanuel Thanassoulis,et al.  Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies , 2003 .

[26]  D. Primont,et al.  Multi-Output Production and Duality: Theory and Applications , 1994 .

[27]  Timo Kuosmanen,et al.  Firm and Industry Level Profit Efficiency Analysis Under Incomplete Price Data: A Nonparametric Approach Based on Absolute and Uniform Shadow Prices , 2006 .

[28]  Kazuyuki Sekitani,et al.  Efficiency measurement with a non-convex free disposal hull technology , 2016, J. Oper. Res. Soc..

[29]  D. Luenberger New optimality principles for economic efficiency and equilibrium , 1992 .

[30]  Chulwoo Baek,et al.  The relevance of DEA benchmarking information and the Least-Distance Measure , 2009, Math. Comput. Model..

[31]  Boaz Golany,et al.  Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions , 1985 .

[32]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[33]  Juan Aparicio,et al.  A well-defined efficiency measure for dealing with closest targets in DEA , 2013, Appl. Math. Comput..

[34]  Marc Nerlove,et al.  Estimation and identification of Cobb-Douglas production functions , 1965 .

[35]  Patrick T. Harker,et al.  Projections Onto Efficient Frontiers: Theoretical and Computational Extensions to DEA , 1999 .

[36]  W. Briec,et al.  Technical efficiency and distance to a reverse convex set , 1999, Eur. J. Oper. Res..

[37]  Eduardo González,et al.  From efficiency measurement to efficiency improvement: The choice of a relevant benchmark , 2001, Eur. J. Oper. Res..

[38]  Atsuhiko Kai,et al.  LEAST DISTANCE BASED INEFFICIENCY MEASURES ON THE PARETO-EFFICIENT FRONTIER IN DEA , 2012 .

[39]  Ole Bent Olesen,et al.  Indicators of ill-conditioned data sets and model misspecification in data envelopment analysis: an extended facet approach , 1996 .

[40]  Walter Briec,et al.  Minimum Distance to the Complement of a Convex Set: Duality Result , 1997 .

[41]  Kazuyuki Sekitani,et al.  Input-output substitutability and strongly monotonic p-norm least distance DEA measures , 2014, Eur. J. Oper. Res..

[42]  Juan Aparicio,et al.  Closest targets and strong monotonicity on the strongly efficient frontier in DEA , 2014 .

[43]  W. Cooper,et al.  RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA , 1999 .

[44]  Alireza Amirteimoori,et al.  A Euclidean distance-based measure of efficiency in data envelopment analysis , 2010 .