Advances in Coating Design for High-Performance Gas Turbines

Surface engineering is now a key materials technology in the design of future advanced gas-turbine engines. This article focuses on coating systems for hot-gas-path components, which can vary from low-cost aluminide diffusion coatings to the more exotic, and therefore expensive, thermal-barrier coatings. Available coating systems and their relative benefits are reviewed in terms of performance against manufacturing complexity and cost. Future trends in the design of environmental- and thermal-protection coatings are discussed, including the addition of multiple reactive elements, modified aluminide coatings, diffusion-barrier concepts, the design of “smart” corrosion-resistant coatings, and the development of structurally modified, low-thermal-conductivity thermal-barrier coatings.

[1]  S. Webb,et al.  Variability of Stress in Alumina Corrosion Layers Formed in Thermal-Barrier Coatings , 2000 .

[2]  I. Chen,et al.  Effect of Dopants on Zirconia Stabilization—An X‐ray Absorption Study: I, Trivalent Dopants , 1994 .

[3]  U. R. Evans,et al.  The corrosion and oxidation of metals , 1976 .

[4]  J. Wit,et al.  The Precious Metal Effect in High Temperature Corrosion , 1994 .

[5]  B. M. Warnes Improved aluminide/MCrAlX coating systems for super alloys using CVD low activity aluminizing , 2003 .

[6]  Nigel J. Simms,et al.  Smart overlay coatings: concept and practice , 2002 .

[7]  F. Pettit,et al.  Hot corrosion degradation of metals and alloys - a unified theory. Final scientific report, 1 June 1976-30 September 1978 , 1979 .

[8]  George C. Chang,et al.  Finite element thermal stress solutions for thermal barrier coatings , 1987 .

[9]  J. Nicholls,et al.  Hot salt corrosion test procedures and coating evaluation , 1984 .

[10]  K. Stiller,et al.  Comparison of inward and outward grown Pt modified aluminide diffusion coatings on a Ni based single crystal superalloy , 2002 .

[11]  D. Clarke,et al.  Microstructural study of the theta-alpha transformation in alumina scales formed on nickel-aluminides , 2000 .

[12]  Woo Y. Lee,et al.  Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings , 2001 .

[13]  F. Stott,et al.  High Temperature Oxidation of Thermal Barrier Coating Systems on RR3000 Substrates: Pt Aluminide Bond Coats , 2001 .

[14]  T. Grobstein,et al.  The oxidation of high-temperature intermetallics , 1989 .

[15]  D. Clarke,et al.  The effect of grit blasting on the oxidation behavior of a platinum-modified nickel-aluminide coating , 2001 .

[16]  P Wright,et al.  Mechanisms governing the performance of thermal barrier coatings , 1999 .

[17]  K. Lawson,et al.  Methods to reduce the thermal conductivity of EB-PVD TBCs , 2002 .

[18]  I. Chen,et al.  Effect of Dopants on Zirconia Stabilization—An X‐ray Absorption Study: III, Charge‐Compensating Dopants , 1994 .

[19]  G. W. Goward,et al.  Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys , 1971 .

[20]  M. Graef,et al.  Metastable extension of the fluorite phase field in Y2O3---ZrO2 and its effect on grain growth , 1994 .

[21]  F. Pettit,et al.  Development, growth, and adhesion of Al2O3 on platinum-aluminum alloys , 1976 .

[22]  J. H. Potgieter,et al.  Oxidation and corrosion behaviour of Fe-Cr and Fe-Cr-Al alloys with minor alloying additions , 1998 .

[23]  Woo Y. Lee,et al.  Substrate and bond coat compositions: factors affecting alumina scale adhesion , 1998 .

[24]  R. Mévrel,et al.  Pack cementation processes , 1986 .

[25]  Anthony G. Evans,et al.  Mechanisms controlling the durability of thermal barrier coatings , 2001 .

[26]  K. Luthra,et al.  Low temperature hot corrosion of CoCrAl alloys , 1987 .

[27]  J. Smialek Effect of sulfur removal on Al2O3 scale adhesion , 1991 .

[28]  D. Whittle,et al.  Influence of small Pt additions on Al2O3 scale adherence , 1980 .

[29]  Thomas E. Strangman,et al.  Thermal barrier coatings for turbine airfoils , 1985 .

[30]  G. W. Goward,et al.  Pack Cementation Coatings for Superalloys: A Review of History, Theory, and Practice , 1988 .

[31]  M. Krishnaiah,et al.  Investigation of the thermal conductivity of selected compounds of lanthanum, samarium and europium , 1998 .

[32]  Robert Vassen,et al.  Zirconates as New Materials for Thermal Barrier Coatings , 2004 .

[33]  R. Rapp,et al.  Pack Cementation Aluminide Coatings on Superalloys: Codeposition of Cr and Reactive Elements , 1992 .

[34]  D. Coutsouradis,et al.  High temperature alloys for gas turbines , 1978 .

[35]  G. R. Zellars,et al.  A feasibility study of a diffusion barrier between Ni-Cr-Al coatings and nickel-based eutectic alloys , 1978 .

[36]  D. Clarke,et al.  Oxidation-induced failure of EB-PVD thermal barrier coatings , 2001 .

[37]  J. Carew,et al.  The production of multi-component alloy coatings by particle codeposition , 1985 .

[38]  J. R. Brandon,et al.  Microstructure, composition and property relationships of plasma-sprayed thermal barrier coatings☆ , 1992 .

[39]  F. Stott,et al.  The influence of platinum on the maintenance of α-Al2O3 as a protective scale , 1976 .

[40]  John R. Nicholls,et al.  Designing oxidation-resistant coatings , 2000 .

[41]  D. K. Gupta,et al.  The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications , 1992 .

[42]  L. Hobbs,et al.  The reactive element effect in commercial ODS FeCrAI alloys , 1995 .

[43]  F. Pettit,et al.  Thermal Barrier Coatings for the 21st Century , 1999, International Journal of Materials Research.

[44]  G. W. Goward,et al.  Progress in coatings for gas turbine airfoils , 1998 .

[45]  R. Rapp The Hot Corrosion of Metals by Molten Salts , 1981 .

[46]  D. H. Boone,et al.  Corrosion resistant modified aluminide coatings , 1988 .

[47]  J. Nicholls,et al.  Erosion of EB-PVD thermal barrier coatings , 1998 .

[48]  David R. Clarke,et al.  SPALLING FAILURE OF A THERMAL BARRIER COATING ASSOCIATED WITH ALUMINUM DEPLETION IN THE BOND-COAT , 1999 .

[49]  H. M. Tawancy,et al.  Comparative thermal stability characteristics and isothermal oxidation behavior of an aluminized and a Pt-aluminized Ni-base superalloy , 1995 .

[50]  Hugh Evans,et al.  Creek effects on the spallation of an alumina layer from a NiCrA1Y coating , 1997 .

[51]  Robert A. Miller,et al.  Current status of thermal barrier coatings — An overview , 1987 .

[52]  B. Pint Study of the Reactive Element Effect in ODS Iron-Base Alumina Formers , 1997 .

[53]  F. J. Honey,et al.  The development of electrodeposits for high‐temperature oxidation/corrosion resistance , 1986 .

[54]  F. Schmitz,et al.  Improvement of MCrAlY coatings by addition of rhenium , 1994 .

[55]  E. Felten Use of platinum and rhodium to improve oxide adherence on Ni-8Cr-6Al alloys , 1976 .

[56]  M. Roode,et al.  Evaluation of the hot corrosion protection of coatings for turbine hot section components , 1989 .

[57]  B. Pint On the formation of interfacial and internal voids inα-Al2O3 scales , 1997 .

[58]  Per Kofstad,et al.  High Temperature Corrosion , 1988 .

[59]  K. Stiller,et al.  SEM and TEM studies of PtAl diffusion coatings under isothermal oxidation , 2000 .

[60]  J. Nicholls High Temperature Surface Engineering , 2000 .

[61]  O. Kubaschewski,et al.  Oxidation of metals and alloys , 1953 .

[62]  F. P. Talboom,et al.  Evaluation of advanced superalloy protection systems , 1971 .

[63]  K. Lawson,et al.  Vapour phase alloy design of corrosion-resistant overlay coatings , 1993 .

[64]  F. Pettit,et al.  High-temperature corrosion of alumina-forming coatings for superalloys , 1989 .

[65]  J. Nicholls,et al.  Erosion and Foreign Object Damage of Thermal Barrier Coatings , 1997 .

[66]  William J. Brindley Thermal Barrier Coatings , 1996 .

[67]  A. Evans,et al.  On the Role of Imperfections in The Failure of a Thermal Barrier Coating Made by Electron Beam Deposition , 2000 .