Fabrication of multiwalled carbon nanotubes/MoS2 nanocomposite: Application as temperature sensor

[1]  Abid,et al.  External Boosting of Free Carriers and Phonon Energy in MoS2/Reduced Graphene Oxide Nanosheet-Based Composite Films: Implications for Thermal Management , 2023, ACS Applied Nano Materials.

[2]  Olfa Kanoun,et al.  Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors , 2021, Sensors.

[3]  Senem Kursun Bahadir,et al.  Flexible temperature sensors: A review , 2020 .

[4]  S. S. Islam,et al.  WS2 Quantum Dots on e-Textile as a Wearable UV Photodetector: How Well Reduced Graphene Oxide Can Serve as a Carrier Transport Medium? , 2020, ACS applied materials & interfaces.

[5]  Yadong Jiang,et al.  Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles , 2020, Rare Metals.

[6]  P. Salvo,et al.  A temperature-sensitive RFID tag for the identification of cold chain failures , 2020, Sensors and Actuators A: Physical.

[7]  N. Hoa,et al.  Controlled synthesis of ultrathin MoS2 nanoflowers for highly enhanced NO2 sensing at room temperature , 2020, RSC advances.

[8]  Gyan Raj Koirala,et al.  Proving the robustness of a PEDOT:PSS-based thermistor via functionalized graphene oxide–poly(vinylidene fluoride) composite encapsulation for food logistics , 2020, RSC advances.

[9]  E. Mijowska,et al.  Enhanced thermal properties of poly(lactic acid)/MoS2/carbon nanotubes composites , 2020, Scientific Reports.

[10]  S. Konishi,et al.  Flexible Temperature Sensor Integrated with Soft Pneumatic Microactuators for Functional Microfingers , 2019, Scientific Reports.

[11]  Hiren Prajapati,et al.  Design and development of thin wire sensor for transient temperature measurement , 2019, Measurement.

[12]  Wei Wu,et al.  Stretchable electronics: functional materials, fabrication strategies and applications , 2019, Science and Technology of Advanced Materials.

[13]  Ashutosh Kumar Singh,et al.  Origin of n -type conductivity of monolayer MoS2 , 2019, Physical Review B.

[14]  Brij Kishore,et al.  Enhanced electrochemical performance of few-layered MoS2–rGO nanocomposite for lithium storage application , 2018, Journal of Materials Science: Materials in Electronics.

[15]  C. Du,et al.  Polyhedral oligomeric silsesquioxane functionalized carbon nanotubes for high thermal conductive poly(vinylidene fluoride) composite membrane , 2018, Materials & Design.

[16]  J. Maultzsch,et al.  Phonon dispersion in MoS2 , 2018, Physical Review B.

[17]  Zongyan Zhao,et al.  Study of the layer-dependent properties of MoS2 nanosheets with different crystal structures by DFT calculations , 2018 .

[18]  S. S. Islam,et al.  Reduced Graphene Oxide based Temperature Sensor: Extraordinary performance governed by lattice dynamics assisted carrier transport , 2018 .

[19]  S. S. Islam,et al.  Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency , 2018, Scientific Reports.

[20]  L Tian,et al.  Wearable sensors: modalities, challenges, and prospects. , 2018, Lab on a chip.

[21]  Ivan Glesk,et al.  Toward Novel Wearable Pyroelectric Temperature Sensor for Medical Applications , 2017, IEEE Sensors Journal.

[22]  Xin Ding,et al.  Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring , 2017, Advanced healthcare materials.

[23]  Yang Hong,et al.  Thermal Conductivity of Monolayer MoSe2 and MoS2 , 2016 .

[24]  Parikshit Sahatiya,et al.  Graphene-based wearable temperature sensor and infrared photodetector on a flexible polyimide substrate , 2016 .

[25]  Dongzhi Zhang,et al.  Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing. , 2016, ACS applied materials & interfaces.

[26]  L. Wirtz,et al.  Vibrational and optical properties of MoS2: From monolayer to bulk , 2015, 1606.03017.

[27]  Soumen Das,et al.  Tunable Direct Bandgap Optical Transitions in MoS2 Nanocrystals for Photonic Devices , 2015 .

[28]  K. Karimov,et al.  Carbon Nanotubes-Silicon Nanocomposites Based Resistive Temperature Sensors , 2015, International Journal of Electrochemical Science.

[29]  C. Du,et al.  Wearable temperature sensor based on graphene nanowalls , 2015 .

[30]  A. Afkhami,et al.  A new nano-composite modified carbon paste electrode as a high performance potentiometric sensor for nanomolar Tl(I) determination , 2014 .

[31]  Soo Ho Choi,et al.  Layer-number-dependent work function of MoS2 nanoflakes , 2014 .

[32]  Choongho Yu,et al.  Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity. , 2014, ACS nano.

[33]  James R Friend,et al.  Electrochemical control of photoluminescence in two-dimensional MoS(2) nanoflakes. , 2013, ACS nano.

[34]  J. Coleman,et al.  Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. , 2013, ACS nano.

[35]  Yu Zhang,et al.  Epitaxial monolayer MoS2 on mica with novel photoluminescence. , 2013, Nano letters.

[36]  L. S. Roman,et al.  ITO‐Free and Flexible Organic Photovoltaic Device Based on High Transparent and Conductive Polyaniline/Carbon Nanotube Thin Films , 2013 .

[37]  A. Afkhami,et al.  A Potentiometric Sensor for Cd2+ Based on Carbon Nanotube Paste Electrode Constructed from Room Temperature Ionic Liquid, Ionophore and Silica Nanoparticles , 2012 .

[38]  A. Balandin,et al.  Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials , 2012 .

[39]  Andrea Pucci,et al.  A temperature sensor based on a MWCNT/SEBS nanocomposite , 2012 .

[40]  A. Ensafi,et al.  Simultaneous determination of cysteamine and folic acid in pharmaceutical and biological samples using modified multiwall carbon nanotube paste electrode , 2012 .

[41]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[42]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[43]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[44]  I. Milošević,et al.  Plasmon excitations of single-wall carbon nanotubes , 2008 .

[45]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[46]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[47]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[48]  J. Knights,et al.  Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination , 1972 .

[49]  N. F. Mott,et al.  Conduction in non-crystalline materials: III. Localized states in a pseudogap and near extremities of conduction and valence bands , 1969 .

[50]  H. Tai,et al.  Amorphous carbon material of daily carbon ink: emerging applications in pressure, strain, and humidity sensors , 2023, Journal of Materials Chemistry C.

[51]  Yong Zhu,et al.  Nanomaterial‐Enabled Wearable Sensors for Healthcare , 2018, Advanced healthcare materials.

[52]  Ali Hajian,et al.  Magnetic Carbon Paste Electrode Modified with a High Performance Composite Based on Molecularly Imprinted Carbon Nanotubes for Sensitive Determination of Levofloxacin , 2016 .

[53]  Shuhui Yu,et al.  Encapsulating carbon nanotubes with SiO2: a strategy for applying them in polymer nanocomposites with high mechanical strength and electrical insulation , 2015 .

[54]  N. Kobayashi,et al.  On the phononic bandgap of carbon nanotubes , 2013 .

[55]  K. Karimov,et al.  Carbon nanotubes based flexible temperature sensors , 2012 .

[56]  S. Stankovich,et al.  Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy , 2009 .